/*
*2015,烟台大学计算机控制工程学院
*All rights reserved
*文件名称:graph.cpp
*作者:邱暖
*完成日期:2015年11月23日
*问题描述:假设图G采用邻接表存储,分别设计实现以下要求的算法,要求用区别于
*示例中的图进行多次测试,通过观察输出值,掌握相关问题的处理方法。
*(1)设计一个算法,判断顶点u到v是否有简单路径
*(2)设计一个算法输出G中从顶点u到v的一条简单路径(设计测试图时,保证图G中从顶点u到v至少有一条简单路径)。
*(3)输出从顶点u到v的所有简单路径。
*(4)输出图G中从顶点u到v的长度为s的所有简单路径。
*(5图中通过某顶点k的所有简单回路(若存在)
*6)求不带权连通图G中从顶点u到顶点v的一条最短路径。
*(7)求不带权连通图G中,距离顶点v最远的顶点k
*/
#ifndef GRAPH_H_INCLUDED
#define GRAPH_H_INCLUDED
#define MAXV 100 //最大顶点个数
#define INF 32767 //INF表示∞
typedef int InfoType;
//以下定义邻接矩阵类型
typedef struct
{
int no; //顶点编号
InfoType info; //顶点其他信息,在此存放带权图权值
} VertexType; //顶点类型
typedef struct //图的定义
{
int edges[MAXV][MAXV]; //邻接矩阵
int n,e; //顶点数,弧数
VertexType vexs[MAXV]; //存放顶点信息
} MGraph; //图的邻接矩阵类型
//以下定义邻接表类型
typedef struct ANode //弧的结点结构类型
{
int adjvex; //该弧的终点位置
struct ANode *nextarc; //指向下一条弧的指针
InfoType info; //该弧的相关信息,这里用于存放权值
} ArcNode;
typedef int Vertex;
typedef struct Vnode //邻接表头结点的类型
{
Vertex data; //顶点信息
int count; //存放顶点入度,只在拓扑排序中用
ArcNode *firstarc; //指向第一条弧
} VNode;
typedef VNode AdjList[MAXV]; //AdjList是邻接表类型
typedef struct
{
AdjList adjlist; //邻接表
int n,e; //图中顶点数n和边数e
} ALGraph; //图的邻接表类型
//功能:由一个反映图中顶点邻接关系的二维数组,构造出用邻接矩阵存储的图
//参数:Arr - 数组名,由于形式参数为二维数组时必须给出每行的元素个数,在此将参数Arr声明为一维数组名(指向int的指针)
// n - 矩阵的阶数
// g - 要构造出来的邻接矩阵数据结构
void ArrayToMat(int *Arr, int n, MGraph &g); //用普通数组构造图的邻接矩阵
void ArrayToList(int *Arr, int n, ALGraph *&); //用普通数组构造图的邻接表
void MatToList(MGraph g,ALGraph *&G);//将邻接矩阵g转换成邻接表G
void ListToMat(ALGraph *G,MGraph &g);//将邻接表G转换成邻接矩阵g
void DispMat(MGraph g);//输出邻接矩阵g
void DispAdj(ALGraph *G);//输出邻接表G
#endif // GRAPH_H_INCLUDED
#include <stdio.h>
#include <malloc.h>
#include "graph.h"
//功能:由一个反映图中顶点邻接关系的二维数组,构造出用邻接矩阵存储的图
//参数:Arr - 数组名,由于形式参数为二维数组时必须给出每行的元素个数,在此将参数Arr声明为一维数组名(指向int的指针)
// n - 矩阵的阶数
// g - 要构造出来的邻接矩阵数据结构
void ArrayToMat(int *Arr, int n, MGraph &g)
{
int i,j,count=0; //count用于统计边数,即矩阵中非0元素个数
g.n=n;
for (i=0; i<g.n; i++)
for (j=0; j<g.n; j++)
{
g.edges[i][j]=Arr[i*n+j]; //将Arr看作n×n的二维数组,Arr[i*n+j]即是Arr[i][j],计算存储位置的功夫在此应用
if(g.edges[i][j]!=0)
count++;
}
g.e=count;
}
void ArrayToList(int *Arr, int n, ALGraph *&G)
{
int i,j,count=0; //count用于统计边数,即矩阵中非0元素个数
ArcNode *p;
G=(ALGraph *)malloc(sizeof(ALGraph));
G->n=n;
for (i=0; i<n; i++) //给邻接表中所有头节点的指针域置初值
G->adjlist[i].firstarc=NULL;
for (i=0; i<n; i++) //检查邻接矩阵中每个元素
for (j=n-1; j>=0; j--)
if (Arr[i*n+j]!=0) //存在一条边,将Arr看作n×n的二维数组,Arr[i*n+j]即是Arr[i][j]
{
p=(ArcNode *)malloc(sizeof(ArcNode)); //创建一个节点*p
p->adjvex=j;
p->info=Arr[i*n+j];
p->nextarc=G->adjlist[i].firstarc; //采用头插法插入*p
G->adjlist[i].firstarc=p;
}
G->e=count;
}
void MatToList(MGraph g, ALGraph *&G)
//将邻接矩阵g转换成邻接表G
{
int i,j;
ArcNode *p;
G=(ALGraph *)malloc(sizeof(ALGraph));
for (i=0; i<g.n; i++) //给邻接表中所有头节点的指针域置初值
G->adjlist[i].firstarc=NULL;
for (i=0; i<g.n; i++) //检查邻接矩阵中每个元素
for (j=g.n-1; j>=0; j--)
if (g.edges[i][j]!=0) //存在一条边
{
p=(ArcNode *)malloc(sizeof(ArcNode)); //创建一个节点*p
p->adjvex=j;
p->info=g.edges[i][j];
p->nextarc=G->adjlist[i].firstarc; //采用头插法插入*p
G->adjlist[i].firstarc=p;
}
G->n=g.n;
G->e=g.e;
}
void ListToMat(ALGraph *G,MGraph &g)
//将邻接表G转换成邻接矩阵g
{
int i,j;
ArcNode *p;
g.n=G->n; //根据一楼同学“举报”改的。g.n未赋值,下面的初始化不起作用
g.e=G->e;
for (i=0; i<g.n; i++) //先初始化邻接矩阵
for (j=0; j<g.n; j++)
g.edges[i][j]=0;
for (i=0; i<G->n; i++) //根据邻接表,为邻接矩阵赋值
{
p=G->adjlist[i].firstarc;
while (p!=NULL)
{
g.edges[i][p->adjvex]=p->info;
p=p->nextarc;
}
}
}
void DispMat(MGraph g)
//输出邻接矩阵g
{
int i,j;
for (i=0; i<g.n; i++)
{
for (j=0; j<g.n; j++)
if (g.edges[i][j]==INF)
printf("%3s","∞");
else
printf("%3d",g.edges[i][j]);
printf("\n");
}
}
void DispAdj(ALGraph *G)
//输出邻接表G
{
int i;
ArcNode *p;
for (i=0; i<G->n; i++)
{
p=G->adjlist[i].firstarc;
printf("%3d: ",i);
while (p!=NULL)
{
printf("-->%d/%d ",p->adjvex,p->info);
p=p->nextarc;
}
printf("\n");
}
}
(6)求不带权连通图G中从顶点u到顶点v的一条最短路径。
#include <stdio.h>
#include <malloc.h>
#include "graph.h"
typedef struct
{
int data; //顶点编号
int parent; //前一个顶点的位置
} QUERE; //非环形队列类型
void ShortPath(ALGraph *G,int u,int v)
{
//输出从顶点u到顶点v的最短逆路径
ArcNode *p;
int w,i;
QUERE qu[MAXV]; //非环形队列
int front=-1,rear=-1; //队列的头、尾指针
int visited[MAXV];
for (i=0; i<G->n; i++) //访问标记置初值0
visited[i]=0;
rear++; //顶点u进队
qu[rear].data=u;
qu[rear].parent=-1;
visited[u]=1;
while (front!=rear) //队不空循环
{
front++; //出队顶点w
w=qu[front].data;
if (w==v) //找到v时输出路径之逆并退出
{
i=front; //通过队列输出逆路径
while (qu[i].parent!=-1)
{
printf("%2d ",qu[i].data);
i=qu[i].parent;
}
printf("%2d\n",qu[i].data);
break;
}
p=G->adjlist[w].firstarc; //找w的第一个邻接点
while (p!=NULL)
{
if (visited[p->adjvex]==0)
{
visited[p->adjvex]=1;
rear++; //将w的未访问过的邻接点进队
qu[rear].data=p->adjvex;
qu[rear].parent=front;
}
p=p->nextarc; //找w的下一个邻接点
}
}
}
int main()
{
ALGraph *G;
int A[9][9]=
{
{0,1,1,0,0,0,0,0,0},
{0,0,0,1,1,0,0,0,0},
{0,0,0,0,1,1,0,0,0},
{0,0,0,0,0,0,1,0,0},
{0,0,0,0,0,1,1,0,0},
{0,0,0,0,0,0,0,1,0},
{0,0,0,0,0,0,0,1,1},
{0,0,0,0,0,0,0,0,1},
{0,0,0,0,0,0,0,0,0}
}; //请画出对应的有向图
ArrayToList(A[0], 9, G);
ShortPath(G,0,7);
return 0;
}
运行结果:
<img src="http://img.blog.csdn.net/20151123171122095" alt="" />
<img src="http://img.blog.csdn.net/20151123171212351" alt="" />
(7)求不带权连通图G中,距离顶点v最远的顶点k
#include <stdio.h>
#include <malloc.h>
#include "graph.h"
int Maxdist(ALGraph *G,int v)
{
ArcNode *p;
int i,j,k;
int Qu[MAXV]; //环形队列
int visited[MAXV]; //访问标记数组
int front=0,rear=0; //队列的头、尾指针
for (i=0; i<G->n; i++) //初始化访问标志数组
visited[i]=0;
rear++;
Qu[rear]=v; //顶点v进队
visited[v]=1; //标记v已访问
while (rear!=front)
{
front=(front+1)%MAXV;
k=Qu[front]; //顶点k出队
p=G->adjlist[k].firstarc; //找第一个邻接点
while (p!=NULL) //所有未访问过的相邻点进队
{
j=p->adjvex; //邻接点为顶点j
if (visited[j]==0) //若j未访问过
{
visited[j]=1;
rear=(rear+1)%MAXV;
Qu[rear]=j; //进队
}
p=p->nextarc; //找下一个邻接点
}
}
return k;
}
int main()
{
ALGraph *G;
int A[9][9]=
{
{0,1,1,0,0,0,0,0,0},
{0,0,0,1,1,0,0,0,0},
{0,0,0,0,1,1,0,0,0},
{0,0,0,0,0,0,1,0,0},
{0,0,0,0,0,1,1,0,0},
{0,0,0,0,0,0,0,1,0},
{0,0,0,0,0,0,0,1,1},
{0,0,0,0,0,0,0,0,1},
{0,0,0,0,0,0,0,0,0}
}; //请画出对应的有向图
ArrayToList(A[0], 9, G);
printf("离顶点0最远的顶点:%d",Maxdist(G,0));
return 0;
}
运行结果:
<img src="http://img.blog.csdn.net/20151123171438118" alt="" />