项目4(2)

/*
*2015,烟台大学计算机控制工程学院
*All rights reserved
*文件名称:graph.cpp
*作者:邱暖
*完成日期:2015年11月23日
*问题描述:假设图G采用邻接表存储,分别设计实现以下要求的算法,要求用区别于
*示例中的图进行多次测试,通过观察输出值,掌握相关问题的处理方法。
*(1)设计一个算法,判断顶点u到v是否有简单路径
*(2)设计一个算法输出G中从顶点u到v的一条简单路径(设计测试图时,保证图G中从顶点u到v至少有一条简单路径)。
*(3)输出从顶点u到v的所有简单路径。
*(4)输出图G中从顶点u到v的长度为s的所有简单路径。
*(5图中通过某顶点k的所有简单回路(若存在)
*6)求不带权连通图G中从顶点u到顶点v的一条最短路径。
*(7)求不带权连通图G中,距离顶点v最远的顶点k


*/
#ifndef GRAPH_H_INCLUDED
#define GRAPH_H_INCLUDED

#define MAXV 100                //最大顶点个数
#define INF 32767       //INF表示∞
typedef int InfoType;

//以下定义邻接矩阵类型
typedef struct
{
    int no;                     //顶点编号
    InfoType info;              //顶点其他信息,在此存放带权图权值
} VertexType;                   //顶点类型

typedef struct                  //图的定义
{
    int edges[MAXV][MAXV];      //邻接矩阵
    int n,e;                    //顶点数,弧数
    VertexType vexs[MAXV];      //存放顶点信息
} MGraph;                       //图的邻接矩阵类型

//以下定义邻接表类型
typedef struct ANode            //弧的结点结构类型
{
    int adjvex;                 //该弧的终点位置
    struct ANode *nextarc;      //指向下一条弧的指针
    InfoType info;              //该弧的相关信息,这里用于存放权值
} ArcNode;

typedef int Vertex;

typedef struct Vnode            //邻接表头结点的类型
{
    Vertex data;                //顶点信息
    int count;                  //存放顶点入度,只在拓扑排序中用
    ArcNode *firstarc;          //指向第一条弧
} VNode;

typedef VNode AdjList[MAXV];    //AdjList是邻接表类型

typedef struct
{
    AdjList adjlist;            //邻接表
    int n,e;                    //图中顶点数n和边数e
} ALGraph;                      //图的邻接表类型

//功能:由一个反映图中顶点邻接关系的二维数组,构造出用邻接矩阵存储的图
//参数:Arr - 数组名,由于形式参数为二维数组时必须给出每行的元素个数,在此将参数Arr声明为一维数组名(指向int的指针)
//      n - 矩阵的阶数
//      g - 要构造出来的邻接矩阵数据结构
void ArrayToMat(int *Arr, int n, MGraph &g); //用普通数组构造图的邻接矩阵
void ArrayToList(int *Arr, int n, ALGraph *&); //用普通数组构造图的邻接表
void MatToList(MGraph g,ALGraph *&G);//将邻接矩阵g转换成邻接表G
void ListToMat(ALGraph *G,MGraph &g);//将邻接表G转换成邻接矩阵g
void DispMat(MGraph g);//输出邻接矩阵g
void DispAdj(ALGraph *G);//输出邻接表G



#endif // GRAPH_H_INCLUDED

#include <stdio.h>
#include <malloc.h>
#include "graph.h"

//功能:由一个反映图中顶点邻接关系的二维数组,构造出用邻接矩阵存储的图
//参数:Arr - 数组名,由于形式参数为二维数组时必须给出每行的元素个数,在此将参数Arr声明为一维数组名(指向int的指针)
//      n - 矩阵的阶数
//      g - 要构造出来的邻接矩阵数据结构
void ArrayToMat(int *Arr, int n, MGraph &g)
{
    int i,j,count=0;  //count用于统计边数,即矩阵中非0元素个数
    g.n=n;
    for (i=0; i<g.n; i++)
        for (j=0; j<g.n; j++)
        {
            g.edges[i][j]=Arr[i*n+j]; //将Arr看作n×n的二维数组,Arr[i*n+j]即是Arr[i][j],计算存储位置的功夫在此应用
            if(g.edges[i][j]!=0)
                count++;
        }
    g.e=count;
}

void ArrayToList(int *Arr, int n, ALGraph *&G)
{
    int i,j,count=0;  //count用于统计边数,即矩阵中非0元素个数
    ArcNode *p;
    G=(ALGraph *)malloc(sizeof(ALGraph));
    G->n=n;
    for (i=0; i<n; i++)                 //给邻接表中所有头节点的指针域置初值
        G->adjlist[i].firstarc=NULL;
    for (i=0; i<n; i++)                 //检查邻接矩阵中每个元素
        for (j=n-1; j>=0; j--)
            if (Arr[i*n+j]!=0)      //存在一条边,将Arr看作n×n的二维数组,Arr[i*n+j]即是Arr[i][j]
            {
                p=(ArcNode *)malloc(sizeof(ArcNode));   //创建一个节点*p
                p->adjvex=j;
                p->info=Arr[i*n+j];
                p->nextarc=G->adjlist[i].firstarc;      //采用头插法插入*p
                G->adjlist[i].firstarc=p;
            }

    G->e=count;
}

void MatToList(MGraph g, ALGraph *&G)
//将邻接矩阵g转换成邻接表G
{
    int i,j;
    ArcNode *p;
    G=(ALGraph *)malloc(sizeof(ALGraph));
    for (i=0; i<g.n; i++)                   //给邻接表中所有头节点的指针域置初值
        G->adjlist[i].firstarc=NULL;
    for (i=0; i<g.n; i++)                   //检查邻接矩阵中每个元素
        for (j=g.n-1; j>=0; j--)
            if (g.edges[i][j]!=0)       //存在一条边
            {
                p=(ArcNode *)malloc(sizeof(ArcNode));   //创建一个节点*p
                p->adjvex=j;
                p->info=g.edges[i][j];
                p->nextarc=G->adjlist[i].firstarc;      //采用头插法插入*p
                G->adjlist[i].firstarc=p;
            }
    G->n=g.n;
    G->e=g.e;
}

void ListToMat(ALGraph *G,MGraph &g)
//将邻接表G转换成邻接矩阵g
{
    int i,j;
    ArcNode *p;
    g.n=G->n;   //根据一楼同学“举报”改的。g.n未赋值,下面的初始化不起作用
    g.e=G->e;
    for (i=0; i<g.n; i++)   //先初始化邻接矩阵
        for (j=0; j<g.n; j++)
            g.edges[i][j]=0;
    for (i=0; i<G->n; i++)  //根据邻接表,为邻接矩阵赋值
    {
        p=G->adjlist[i].firstarc;
        while (p!=NULL)
        {
            g.edges[i][p->adjvex]=p->info;
            p=p->nextarc;
        }
    }
}

void DispMat(MGraph g)
//输出邻接矩阵g
{
    int i,j;
    for (i=0; i<g.n; i++)
    {
        for (j=0; j<g.n; j++)
            if (g.edges[i][j]==INF)
                printf("%3s","∞");
            else
                printf("%3d",g.edges[i][j]);
        printf("\n");
    }
}

void DispAdj(ALGraph *G)
//输出邻接表G
{
    int i;
    ArcNode *p;
    for (i=0; i<G->n; i++)
    {
        p=G->adjlist[i].firstarc;
        printf("%3d: ",i);
        while (p!=NULL)
        {
            printf("-->%d/%d ",p->adjvex,p->info);
            p=p->nextarc;
        }
        printf("\n");
    }
}
(6)求不带权连通图G中从顶点u到顶点v的一条最短路径。
#include <stdio.h>
#include <malloc.h>
#include "graph.h"

typedef struct
{
    int data;                   //顶点编号
    int parent;                 //前一个顶点的位置
} QUERE;                        //非环形队列类型

void ShortPath(ALGraph *G,int u,int v)
{
    //输出从顶点u到顶点v的最短逆路径
    ArcNode *p;
    int w,i;
    QUERE qu[MAXV];             //非环形队列
    int front=-1,rear=-1;       //队列的头、尾指针
    int visited[MAXV];
    for (i=0; i<G->n; i++)      //访问标记置初值0
        visited[i]=0;
    rear++;                     //顶点u进队
    qu[rear].data=u;
    qu[rear].parent=-1;
    visited[u]=1;
    while (front!=rear)         //队不空循环
    {
        front++;                //出队顶点w
        w=qu[front].data;
        if (w==v)               //找到v时输出路径之逆并退出
        {
            i=front;            //通过队列输出逆路径
            while (qu[i].parent!=-1)
            {
                printf("%2d ",qu[i].data);
                i=qu[i].parent;
            }
            printf("%2d\n",qu[i].data);
            break;
        }
        p=G->adjlist[w].firstarc;   //找w的第一个邻接点
        while (p!=NULL)
        {
            if (visited[p->adjvex]==0)
            {
                visited[p->adjvex]=1;
                rear++;             //将w的未访问过的邻接点进队
                qu[rear].data=p->adjvex;
                qu[rear].parent=front;
            }
            p=p->nextarc;           //找w的下一个邻接点
        }
    }
}

int main()
{
    ALGraph *G;
    int A[9][9]=
    {
        {0,1,1,0,0,0,0,0,0},
        {0,0,0,1,1,0,0,0,0},
        {0,0,0,0,1,1,0,0,0},
        {0,0,0,0,0,0,1,0,0},
        {0,0,0,0,0,1,1,0,0},
        {0,0,0,0,0,0,0,1,0},
        {0,0,0,0,0,0,0,1,1},
        {0,0,0,0,0,0,0,0,1},
        {0,0,0,0,0,0,0,0,0}
    };  //请画出对应的有向图
    ArrayToList(A[0], 9, G);
    ShortPath(G,0,7);
    return 0;
}
运行结果:
<img src="http://img.blog.csdn.net/20151123171122095" alt="" />
<img src="http://img.blog.csdn.net/20151123171212351" alt="" />
(7)求不带权连通图G中,距离顶点v最远的顶点k
#include <stdio.h>
#include <malloc.h>
#include "graph.h"

int Maxdist(ALGraph *G,int v)
{
    ArcNode *p;
    int i,j,k;
    int Qu[MAXV];               //环形队列
    int visited[MAXV];              //访问标记数组
    int front=0,rear=0;             //队列的头、尾指针
    for (i=0; i<G->n; i++)          //初始化访问标志数组
        visited[i]=0;
    rear++;
    Qu[rear]=v;                 //顶点v进队
    visited[v]=1;               //标记v已访问
    while (rear!=front)
    {
        front=(front+1)%MAXV;
        k=Qu[front];                //顶点k出队
        p=G->adjlist[k].firstarc;       //找第一个邻接点
        while (p!=NULL)             //所有未访问过的相邻点进队
        {
            j=p->adjvex;            //邻接点为顶点j
            if (visited[j]==0)          //若j未访问过
            {
                visited[j]=1;
                rear=(rear+1)%MAXV;
                Qu[rear]=j; //进队
            }
            p=p->nextarc;           //找下一个邻接点
        }
    }
    return k;
}

int main()
{
    ALGraph *G;
    int A[9][9]=
    {
        {0,1,1,0,0,0,0,0,0},
        {0,0,0,1,1,0,0,0,0},
        {0,0,0,0,1,1,0,0,0},
        {0,0,0,0,0,0,1,0,0},
        {0,0,0,0,0,1,1,0,0},
        {0,0,0,0,0,0,0,1,0},
        {0,0,0,0,0,0,0,1,1},
        {0,0,0,0,0,0,0,0,1},
        {0,0,0,0,0,0,0,0,0}
    };  //请画出对应的有向图
    ArrayToList(A[0], 9, G);
    printf("离顶点0最远的顶点:%d",Maxdist(G,0));
    return 0;
}
运行结果:
<img src="http://img.blog.csdn.net/20151123171438118" alt="" />

你可能感兴趣的:(项目4(2))