本文就是通过opencv中提供的透视变换函数cv::WarpPerspective(),将左边的图像变换为右边的图像
原文网址:http://opencv-code.com/tutorials/automatic-perspective-correction-for-quadrilateral-objects/#comment-193
具体流程为:
a)载入图像→灰度化→边缘处理得到边缘图像(edge map)
cv::Mat im = cv::imread(filename);
cv::Mat gray;
cvtColor(im,gray,CV_BGR2GRAY);
Canny(gray,gray,100,150,3);
b)霍夫变换进行直线检测,此处使用的是probabilistic Hough transform(cv::HoughLinesP)而不是standard Hough transform(cv::HoughLines)
std::vector<Vec4i> lines;
cv::HoughLinesP(gray,lines,1,CV_PI/180,70,30,10);
for(int i = 0; i < lines.size(); i++)
line(im,cv::Point(lines[i][0],lines[i][1]),cv::Point(lines[i][2],lines[i][3]),Scalar(255,0,0),2,8,0);
c)通过上面的图我们可以看出,通过霍夫变换检测到的直线并没有将整个边缘包含,但是我们要求的是四个顶点所以并不一定要直线真正的相交,下面就要求四个顶点的坐标,公式为:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
|
cv::Point2f computeIntersect(cv::Vec4i a, cv::Vec4i b)
{
int
x1 = a[0], y1 = a[1], x2 = a[2], y2 = a[3];
int
x3 = b[0], y3 = b[1], x4 = b[2], y4 = b[3];
if
(
float
d = ((
float
)(x1-x2) * (y3-y4)) - ((y1-y2) * (x3-x4)))
{
cv::Point2f pt;
pt.x = ((x1*y2 - y1*x2) * (x3-x4) - (x1-x2) * (x3*y4 - y3*x4)) / d;
pt.y = ((x1*y2 - y1*x2) * (y3-y4) - (y1-y2) * (x3*y4 - y3*x4)) / d;
return
pt;
}
else
return
cv::Point2f(-1, -1);
}
|
1
2
3
4
5
6
7
8
9
10
|
std::vector<cv::Point2f> corners;
for
(
int
i = 0; i < lines.size(); i++)
{
for
(
int
j = i+1; j < lines.size(); j++)
{
cv::Point2f pt = computeIntersect(lines[i], lines[j]);
if
(pt.x >= 0 && pt.y >= 0)
corners.push_back(pt);
}
}
|
1
2
3
4
5
6
7
8
9
|
std::vector<cv::Point2f> approx;
cv::approxPolyDP(cv::Mat(corners), approx,
cv::arcLength(cv::Mat(corners),
true
) * 0.02,
true
);
if
(approx.size() != 4)
{
std::cout <<
"The object is not quadrilateral!"
<< std::endl;
return
-1;
}
|
void
sortCorners(std::vector<cv::Point2f>& corners, cv::Point2f center)
{
std::vector<cv::Point2f> top, bot;
for
(
int
i = 0; i < corners.size(); i++)
{
if
(corners[i].y < center.y)
top.push_back(corners[i]);
else
bot.push_back(corners[i]);
}
cv::Point2f tl = top[0].x > top[1].x ? top[1] : top[0];
cv::Point2f tr = top[0].x > top[1].x ? top[0] : top[1];
cv::Point2f bl = bot[0].x > bot[1].x ? bot[1] : bot[0];
cv::Point2f br = bot[0].x > bot[1].x ? bot[0] : bot[1];
corners.clear();
corners.push_back(tl);
corners.push_back(tr);
corners.push_back(br);
corners.push_back(bl);
}
|
下面是获得中心点坐标然后利用上面的函数确定四个顶点的坐标
for
(
int
i = 0; i < corners.size(); i++)
center += corners[i];
center *= (1. / corners.size());
sortCorners(corners, center);
|
定义目的图像并初始化为0
cv::Mat quad = cv::Mat::zeros(300, 220, CV_8UC3);
|
获取目的图像的四个顶点
std::vector<cv::Point2f> dst_pt;
dst.push_back(cv::Point2f(0,0));
dst.push_back(cv::Point2f(quad.cols,0));
dst.push_back(cv::Point2f(quad.cols,quad.rows));
dst.push_back(cv::Point2f(0,quad.rows));
|
计算映射矩阵
cv::Mat transmtx = cv::getPerspectiveTransform(corners, quad_pts);
|
进行透视变换并显示结果
cv::warpPerspective(im, quad, transmtx, quad.size());
cv::imshow(
"quadrilateral"
, quad);
|