You will be given two sets ofintegers. Let�s call them set A and setB.Set Acontains nelements and setB contains m elements. You have to remove k1elements from set A and k2elements from setB so that of the remaining valuesno integer in set B is a multiple of any integer insetA.k1should be in the range [0,n] andk2 in therange [0,m].
You have to find the value of (k1+k2) such that(k1+k2)is as low as possible.
P is a multiple of Q if there is some integerKsuch that P=K*Q.
Suppose set A is {2,3,4,5} and set B is{6,7,8,9}.By removing 2 and 3 fromA and 8from B,we get the sets {4,5} and {6,7,9}.Here none of the integers 6,7 or 9is a multiple of 4 or 5.
So for this case the answer is 3(2from set Aand 1from set B).
The first line of input is aninteger T(T<50) thatdetermine the number of test cases. Each case consists of two lines. The firstline starts withn followed by n integers. The second line startswithmfollowed by m integers. Both n andm will be in therange [1,100].All the elements of the two sets will fit in32 bit signedinteger.
For each case, output thecase number followed by the answer.
Sample Input |
Output for Sample Input |
2 4 2 3 4 5 4 6 7 8 9 3 100 200 300 1 150 |
Case 1: 3 Case 2: 0 |
题意:给出两个集合A和B,从A,B集合中删除最小的数,使得集合B中没有元素是集合 A元素的倍数
思路:用最大二分匹配,注意0是0的倍数
用匈牙利算法的DFS耗时0.016m
11159 - Factors and Multiples | Accepted | C++ | 0.016 | 0.000 | 277 | 2 hours ag |
#include <cstdio> #include <cstring> using namespace std; const int MAXN = 100; int x[MAXN], y[MAXN]; int g[MAXN][MAXN]; int n, m; int mx[MAXN], my[MAXN]; bool vis[MAXN]; void input() { scanf("%d", &n); for (int i = 0; i < n; i++) { scanf("%d", &x[i]); } scanf("%d", &m); for (int i = 0; i < m; i++) { scanf("%d", &y[i]); } } bool match(int u) { for (int i = 0; i < m; i++) { if (!vis[i] && g[u][i]) { vis[i] = true; if (my[i] == -1 || match(my[i])) { my[i] = u; mx[u] = i; return true; } } } return false; } void solve() { memset(g, 0x00, sizeof(g)); for (int i = 0; i < n; i++) { for (int j = 0; j < m; j++) { if ((x[i] != 0 && y[j] % x[i] == 0) || (x[i] == 0 && y[j] == 0)) g[i][j] = 1; } } memset(mx, 0xff, sizeof(mx)); memset(my, 0xff, sizeof(my)); int ans = 0; for (int i = 0; i < n; i++) { if (mx[i] == -1) { memset(vis, false, sizeof(vis)); if (match(i)) ans++; } } printf("%d\n", ans); } int main() { #ifndef ONLINE_JUDGE freopen("/cygdrive/d/OJ/uva_in.txt", "r", stdin); #endif int cas; scanf("%d", &cas); for (int i = 1; i <= cas; i++) { printf("Case %d: ", i); input(); solve(); } return 0; }
11159 - Factors and Multiples | Accepted | C++ | 0.012 | 0.000 | 164 | 16 mins ago |
#include <cstdio> #include <cstring> using namespace std; const int MAXN = 100; int x[MAXN], y[MAXN]; int g[MAXN][MAXN]; int n, m; int mx[MAXN], my[MAXN]; void input() { scanf("%d", &n); for (int i = 0; i < n; i++) { scanf("%d", &x[i]); } scanf("%d", &m); for (int i = 0; i < m; i++) { scanf("%d", &y[i]); } } int match() { int pre[MAXN]; int ans = 0; for (int i = 0; i < n; i++) { if (mx[i] == -1) { for (int j = 0; j < m; j++) pre[j] = -2; int q[MAXN]; int front = 0, rear = 0; int cur; for (int j = 0; j < m; j++) { if (g[i][j]) { pre[j] = -1; q[rear++] = j; } } while (front < rear) { cur = q[front]; if (my[cur] == -1) break; front++; for (int j = 0; j < m; j++) { if (pre[j] == -2 && g[my[cur]][j]) { pre[j] = cur; q[rear++] = j; } } } if (front >= rear) continue; while (pre[cur] > -1) { mx[my[pre[cur]]] = cur; my[cur] = my[pre[cur]]; cur = pre[cur]; } mx[i] = cur; my[cur] = i; ans++; } } return ans; } void solve() { memset(g, 0x00, sizeof(g)); for (int i = 0; i < n; i++) { for (int j = 0; j < m; j++) { if ((x[i] != 0 && y[j] % x[i] == 0) || (x[i] == 0 && y[j] == 0)) g[i][j] = 1; } } memset(mx, 0xff, sizeof(mx)); memset(my, 0xff, sizeof(my)); int ans = match(); printf("%d\n", ans); } int main() { #ifndef ONLINE_JUDGE freopen("./uva_in.txt", "r", stdin); #endif int cas; scanf("%d", &cas); for (int i = 1; i <= cas; i++) { printf("Case %d: ", i); input(); solve(); } return 0; }