- pytorch矩阵乘法
weixin_45694975
pytorch深度学习神经网络
一、torch.bmminput1shape:(batch_size,seq1_len,emb_dim)input2shape:(batch_size,emb_dim,seq2_len)outputshape:(batch_size,seq1_len,seq2_len)注意:torch.bmm只适合三维tensor做矩阵运算特别地,torch.bmm支持tenso广播运算input1shape:(
- pytorch矩阵乘法总结
chenxi yan
PyTorch学习pytorch矩阵深度学习
1.element-wise(*)按元素相乘,支持广播,等价于torch.mul()a=torch.tensor([[1,2],[3,4]])b=torch.tensor([[2,3],[4,5]])c=a*b#等价于torch.mul(a,b)#tensor([[2,6],#[12,20]])a*torch.tensor([1,2])#广播,等价于torch.mul(a,torch.tensor
- DataWhale Pandas数据分析 Task01:预备知识
Shawnxs_
DataWhalePandas数据分类pythonpandas
文章目录练习Ex1:利用列表推导式写矩阵乘法Ex2:更新矩阵Ex3:卡方统计量Ex4:改进矩阵计算的性能Ex5:连续整数的最大长度心得体会练习Ex1:利用列表推导式写矩阵乘法一般的矩阵乘法根据公式,可以由三重循环写出:In[138]:M1=np.random.rand(2,3)In[139]:M2=np.random.rand(3,4)In[140]:res=np.empty((M1.shape[
- Matlab初等数学与线性代数
崔渭阳
matlabmatlab线性代数数据结构
初等数学算术运算基本算术加法+添加数字,追加字符串sum数组元素总和cumsum累积和movsum移动总和A=1:5;B=cumsum(A)B=1×51361015减法-减法diff差分和近似导数乘法.*乘法*矩阵乘法prod数组元素的乘积cumprod累积乘积pagemtimes按页矩阵乘法(自R2020b起)tensorprodTensorproductsbetweentwotensors(自
- pytorch torch.matmul函数介绍
qq_27390023
pytorch人工智能python
torch.matmul是PyTorch中用于进行矩阵乘法的函数。它可以执行两维矩阵、向量和更高维张量之间的乘法运算,支持的运算取决于输入张量的维度。1.函数签名torch.matmul(input,other,out=None)input:左乘的张量。other:右乘的张量。out:可选,用于存储输出结果的张量。2.不同维度的乘法规则torch.matmul根据输入张量的维度执行不同类型的乘法:
- Pytorch中乘法函数torch.matmul() 的一种用法
Coder_Jh
pytorch人工智能python
主要记录下torch.matmul(A,B)的用法中的一种情况:当A,B有一个是3维以上,另一个是3维或3维以上时,如果想要使用torch.matmul(A,B),必须同时满足:1.A和B的最后两个维度满足矩阵乘法的要求。例如A的维度是(3,1,3,3),B是(3,3,2),此时A的最后2维是(3,3),B是(3,2),符合条件2.除去最后两个维度,A和B的其他维度要满足可以广播的条件。例如A的维
- pytorch torch.einsum函数介绍
qq_27390023
pytorch人工智能python
torch.einsum是PyTorch中一个强大且灵活的张量运算函数,基于爱因斯坦求和约定进行操作。它允许用户通过简单的字符串表达式来定义复杂的张量运算,代替显式的循环或多个矩阵乘法操作。函数签名torch.einsum(equation,*operands)→Tensor参数equation:一个字符串,描述了张量间的操作关系。它使用爱因斯坦求和约定,用逗号分隔不同张量的索引,使用箭头(->)
- Python常用库-nump的使用
问道飞鱼
Python相关内容python开发语言numpy
文章目录安装NumPy导入NumPy创建数组1.使用列表创建数组2.多维数组3.使用特殊函数数组的基本操作1.数组形状和大小2.数据类型3.转换数据类型4.数组索引5.数组切片6.维度转换7.数组连接8.数组分割数学运算1.算术运算2.广播机制3.统计函数4.最大最小值5.排序索引与切片1.索引2.切片3.高级索引条件操作1.条件选择2.where函数复杂操作1.矩阵乘法2.线性代数3.矩阵的逆N
- 通义说【线性代数】为什么矩阵乘以向量是一个对矩阵中列向量的线性组合
假装有头像
线性代数
矩阵乘以向量可以被理解为该向量在矩阵所代表的空间变换下的映射结果,也可以看作是矩阵列向量的线性组合。为了更好地理解这一点,让我们从矩阵乘法的基本定义出发。假设有一个m×nm\timesnm×n的矩阵AAA和一个nnn维列向量x\mathbf{x}x,矩阵AAA可以写成由它的列向量组成的集合,即:A=[a1,a2,…,an]A=[\mathbf{a}_1,\mathbf{a}_2,\ldots,\m
- 【OpenGL】详细介绍Z-Buffer与W-Buffer
伐尘
OpenGl图形渲染openglvulkun3d
【OpenGL】详细介绍Z-Buffer与W-Buffer一、简介:Depth-Buffer(深度缓存)有两种:Z-Buffer和W-Buffer,这里讨论这两种深度缓存的区别,以及如何在两者之间转换。二、w的含义3D空间点的坐标是(x,y,z),为了使矩阵乘法具有平移变换的功效,我们用4D空间中的点(x,y,z,w)来表示3D空间中的点(x’,y’,z’),这两个不同空间点之间的关系是:x'=x
- Numpy学习笔记(二)
海棠未语
numpy学习笔记人工智能矩阵python
目录基本运算(一)矢量和矩阵运算1、加法2、减法3、乘法4、除法5、幂运算(二)统计运算1、求和2、求平均值3、求方差4、求标准差5、求最大值6、求最小值(三)逻辑运算1、逻辑非2、逻辑与3、逻辑或4、逻辑异或(四)比较运算1、等于2、不等于3、大于4、小于5、大于等于6、小于等于(五)指数和对数运算1、指数2、自然对数3、以10为底的对数4、以2为底的对数(六)线性代数运算1、矩阵乘法2、矩阵乘
- 线性代数基础
猿饵块
线性代数机器学习算法
向量的点积点乘和叉乘矩阵乘法规则:1,两个矩阵相乘时,第一个矩阵的列数必须等于第二个矩阵的行数矩阵乘法是点乘还是叉乘矩阵点乘:是矩阵各个对应元素相乘,这个时候要求两个矩阵必须同样大小。矩阵叉乘:矩阵的乘法就是矩阵a的第m行乘以矩阵b的第n列,各个元素对应相乘然后求和作为第m行n列元素的值所以矩阵乘法是叉乘。矩阵满足结合律,不满足交换律。满足交换律的是逆矩阵。旋转矩阵平移矩阵
- 二维的旋转平移矩阵
#君君#
算法算法
在二维空间中,旋转和平移变换可以通过2x2的旋转矩阵和2x3的变换矩阵来表示。二维旋转矩阵用于表示一个点或向量在二维平面上的旋转。对于绕原点逆时针旋转θ角的变换,其旋转矩阵为:复制代码R=|cosθ-sinθ||sinθcosθ|如果有一个二维点P(x,y),则旋转后的点P'(x',y')可以通过矩阵乘法得到:复制代码|x'||cosθ-sinθ||x||y'|=|sinθcosθ||y|计算后得
- 初识tensorflow程序设计模式
Phoenix Studio
深度学习tensorflow人工智能python
文章目录建立'计算图'tensorflowplaceholdertensorflow数值运算常用的方法tensorboard启动tensorboard的方法建立一维与二维张量建立一维张量建立二维张量建立新的二维张量矩阵的基本运算矩阵的加法矩阵乘法与加法github地址https://github.com/fz861062923/TensorFlow建立’计算图’#建立‘计算图’importtens
- Python 矩阵乘法
勤奋的大熊猫
Python科学计算基础python矩阵
Python矩阵乘法引言正文引言这里给大家介绍一下Pyhon中如何进行矩阵乘法运算。正文对于矩阵乘法,我们推荐使用Numpy包来进行,事实上,我们可以使用三个函数来实现。第一个是np.dot()函数,第二个是np.matmul()函数以及@符号。这里我们简单说一下它们的区别,np.matmul()函数与@符号是等价的。它们不能够用来计算标量乘法,比如当我们运行如下代码时就会报错。importnum
- 算法分类合集
weixin_30784945
算法分类合集ACM所有算法数据结构栈,队列,链表哈希表,哈希数组堆,优先队列双端队列可并堆左偏堆二叉查找树Treap伸展树并查集集合计数问题二分图的识别平衡二叉树二叉排序树线段树一维线段树二维线段树树状数组一维树状数组N维树状数组字典树后缀数组,后缀树块状链表哈夫曼树桶,跳跃表Trie树(静态建树、动态建树)AC自动机LCA和RMQ问题KMP算法图论基本图算法图广度优先遍历深度优先遍历拓扑排序割边
- ACM算法分类(要学习的东西还很多)
还是太年轻
ACM所有算法数据结构栈,队列,链表哈希表,哈希数组堆,优先队列双端队列可并堆左偏堆二叉查找树Treap伸展树并查集集合计数问题二分图的识别平衡二叉树二叉排序树线段树一维线段树二维线段树树状数组一维树状数组N维树状数组字典树后缀数组,后缀树块状链表哈夫曼树桶,跳跃表Trie树(静态建树、动态建树)AC自动机LCA和RMQ问题KMP算法图论基本图算法图广度优先遍历深度优先遍历拓扑排序割边割点强连通分
- ACM算法目录
龍木
ACM所有算法数据结构栈,队列,链表哈希表,哈希数组堆,优先队列双端队列可并堆左偏堆二叉查找树Treap伸展树并查集集合计数问题二分图的识别平衡二叉树二叉排序树线段树一维线段树二维线段树树状数组一维树状数组N维树状数组字典树后缀数组,后缀树块状链表哈夫曼树桶,跳跃表Trie树(静态建树、动态建树)AC自动机LCA和RMQ问题KMP算法图论基本图算法图广度优先遍历深度优先遍历拓扑排序割边割点强连通分
- numpy 矩阵乘法_一起学习Python常用模块——numpy
weixin_39636099
numpy矩阵乘法numpy矩阵乘法python对ndarray全体除以一个数python稀疏矩阵乘法python空数组python安装numpy模块
关注微信公众号:一个数据人的自留地作者介绍知乎@王多鱼百度的一名推荐算法攻城狮。主要负责商品推荐的召回和排序模型的优化工作。1前言Python在数据科学、机器学习、AI领等域中占据主导地位,目前对于数据分析师和算法工程师来说是必备技能。对于数据分析师来说,应掌握基础语法和数据科学的模块,主要包括:pandas、numpy和机器学习库sklearn等。对于算法工程师来说,还应掌握深度学习相关模块,主
- 【深度学习】S2 数学基础 P1 线性代数(上)
脚踏实地的大梦想家
#深度学习深度学习线性代数人工智能
目录基本数学对象标量与变量向量矩阵张量降维求和非降维求和累计求和点积与向量积点积矩阵-向量积矩阵-矩阵乘法深度学习的三大数学基础——线性代数、微积分、概率论;自本篇博文以下几遍博文,将对这三大数学基础进行重点提炼。本节博文将介绍线性代数知识,为线性代数第一部分。包含基本数学对象、算数和运算,并用数学符号和相应的张量代码实现表示它们。基本数学对象基本数学对象包含:0维:标量与变量;1维:向量;2维:
- 【小赛1】蓝桥杯双周赛第5场(小白)思路回顾
清风莫追
愚公搬算法蓝桥杯职场和发展python算法
我的成绩:小白(5/6)完稿时间:2024-2-13比赛地址:https://www.lanqiao.cn/oj-contest/newbie-5/相关资料:1、出题人题解:“蓝桥杯双周赛·第5次强者挑战赛/小白入门赛”出题人题解-知乎(zhihu.com)2、矩阵快速幂:算法学习笔记(4):快速幂-知乎(zhihu.com)讲得挺好的,从快速幂到矩阵快速幂,以及在求解递推式中的应用。3、矩阵乘法
- 【fortran】开源BLAS库矩阵乘法的简单Fortran示例
尘中928
编程数学矩阵线性代数
一、安装开源BLAS库OpenBLAS安装OpenBLAS可以通过几个步骤来完成,这些步骤因操作系统的不同而有所变化。以下是为几种常见系统下的安装。在Ubuntu/DebianLinux上安装OpenBLAS在基于Debian的系统(如Ubuntu)上,可以使用apt-get来安装OpenBLAS:sudoapt-getupdatesudoapt-getinstalllibopenblas-dev
- [算法学习]
Waldeinsamkeit41
算法学习
矩阵乘法只有当左矩阵列数等于右矩阵行数,才能相乘N*M的矩阵和M*K的矩阵做乘法后矩阵大小为N*k矩阵乘法规则:第一个矩阵A的第i行与第二个矩阵的第j列的各M个元素对应相乘再相加得到新矩阵C[i][j]的值整除同余同余的性质线性运算,对加法、减法、乘法封闭(封闭的意思是:可以把取模之后的数当作取模之前的数进行操作,因为在取模下,两者是等价的)可以同时约去一个可整除的数GCD与LCM最大公约数GCD
- Python运算符大全,值得收藏
hakesashou
python基础知识pythonjava算法
一、Python的算术运算Python的算术运算符与C语言类似,略有不同。包括加(+)、减(-)、乘(*)、除(/)、取余(%)、按位或(|)、按位与(&)、按位求补(~)、左移位(>)、单目求反(-)、幂运算(**)、整除运算(//)、增强运算、增强矩阵乘法(@)。增强运算是将算术运算符或逻辑运算符放到等号的左侧,与C语言的增强运算符相同。如x+=5,表示x=x+5,该种方法CPU的处理效率高于
- 【TRIE字典树实现:400行】(模糊匹配 | AC自动机 | 多模式匹配 | 串排序 | 词频计数 | 相似度分析 | RAII模式 | 前缀比较 )
XNB's Not a Beginner
算法语言特性ModernCppADT数据结构实现c++算法开发语言哈希算法图论数据结构链表
目录程序测试[insert_erase_countDEMO]插入测试【ACAutomiton|MultipatternmatchingDEMO】AC自动机|多模式匹配测试【RecursivetdeepcopyconstructDEMO】多叉树的递归深拷贝测试【stringsortDEMO】串的非比较排序测试【fuzzypatternmatchingDEMO】模糊匹配测试【Similarityana
- LoRA:语言模型微调的计算资源优化策略
编者按:随着数据量和计算能力的增加,大模型的参数量也在不断增加,同时进行大模型微调的成本也变得越来越高。全参数微调需要大量的计算资源和时间,且在进行切换下游任务时代价高昂。本文作者介绍了一种新方法LoRA,可以在保持模型性能的同时大幅减少微调的参数量和所需资源。LoRA通过引入两个低秩适配矩阵,用矩阵乘法的方法替换大部分参数。实验证明,LoRA在多项NLP任务上的表现与许多微调方法(如Adapte
- 假期刷题打卡--Day27
a-626
假期打卡学习c++c语言
1、MT1217矩阵乘法输入3X4整型矩阵A和4X3的整型矩阵B,计算A*B,放到矩阵C里面,输出矩阵C。格式输入格式:分两行输入两个矩阵,空格分隔。输出格式:按矩阵形式输出,整型,每个数字占3列,空格分隔。样例1输入:3007000-1020041001-1021021输出:121770-2-102-2分析过程本题的要点在于矩阵乘法如何计算,这就考验线性代数学的咋样了。对于3X4整型矩阵A和4X
- PyTorch中基础模块torch的详细介绍
科学禅道
PyTorchpytorch人工智能python
torch是PyTorch库的核心模块,提供了以下关键功能:张量(Tensor):类似于NumPy的ndarray,但可以无缝地在CPU或GPU上运行,并且支持自动微分,是深度学习模型中数据的主要表示形式。数学运算:包括基本的数学运算符重载(如加减乘除)、矩阵运算(如矩阵乘法、点积、卷积)、统计函数(如求和、平均值、最大值、最小值等)以及更复杂的数学操作。数据类型转换:允许用户创建不同数据类型的张
- 【大模型】万亿级别的大语言模型训练,基础设施如何支持
沐风—云端行者
云计算架构语言模型人工智能自然语言处理
万亿级别的大语言模型训练,基础设施如何支持前言1)培训百万亿参数的LLM是可行的,但需要每个GPU高达1TiB的次级内存池,双向带宽为100GB/s。2)对于1T模型的强扩展在约12288个GPU左右停滞,因为矩阵乘法变得小而低效,并且无法与通信overlap。3)超过10T模型需要更多的一级内存,其中HBM大小与模型大小成比例。4)将模型和系统大小增加到10T参数和10,000个GPU以上需要更
- dx12 龙书第二章学习笔记 -- 矩阵代数
帅狗狗灬
DirectX笔记学习线性代数矩阵c++
1.矩阵及其运算矩阵的运算:①加②减③标量乘法④矩阵乘法:矩阵乘法要有意义的条件是矩阵A的列数和矩阵B的行数必须相同,所以一般不满足交换律⑤转置矩阵:⑥矩阵行列式:detA学习行列式的主要目的是:利用它推导出求逆矩阵的公式方阵A是可逆的,当且仅当detA≠0余子阵:去除第i行和第j行得到的(n-1)*(n-1)矩阵0矩阵的行列式是一种递归定义,detA的A当是二维方阵时,行列式的值就是元素Aij的
- Enum用法
不懂事的小屁孩
enum
以前的时候知道enum,但是真心不怎么用,在实际开发中,经常会用到以下代码:
protected final static String XJ = "XJ";
protected final static String YHK = "YHK";
protected final static String PQ = "PQ";
- 【Spark九十七】RDD API之aggregateByKey
bit1129
spark
1. aggregateByKey的运行机制
/**
* Aggregate the values of each key, using given combine functions and a neutral "zero value".
* This function can return a different result type
- hive创建表是报错: Specified key was too long; max key length is 767 bytes
daizj
hive
今天在hive客户端创建表时报错,具体操作如下
hive> create table test2(id string);
FAILED: Execution Error, return code 1 from org.apache.hadoop.hive.ql.exec.DDLTask. MetaException(message:javax.jdo.JDODataSto
- Map 与 JavaBean之间的转换
周凡杨
java自省转换反射
最近项目里需要一个工具类,它的功能是传入一个Map后可以返回一个JavaBean对象。很喜欢写这样的Java服务,首先我想到的是要通过Java 的反射去实现匿名类的方法调用,这样才可以把Map里的值set 到JavaBean里。其实这里用Java的自省会更方便,下面两个方法就是一个通过反射,一个通过自省来实现本功能。
1:JavaBean类
1 &nb
- java连接ftp下载
g21121
java
有的时候需要用到java连接ftp服务器下载,上传一些操作,下面写了一个小例子。
/** ftp服务器地址 */
private String ftpHost;
/** ftp服务器用户名 */
private String ftpName;
/** ftp服务器密码 */
private String ftpPass;
/** ftp根目录 */
private String f
- web报表工具FineReport使用中遇到的常见报错及解决办法(二)
老A不折腾
finereportweb报表java报表总结
抛砖引玉,希望大家能把自己整理的问题及解决方法晾出来,Mark一下,利人利己。
出现问题先搜一下文档上有没有,再看看度娘有没有,再看看论坛有没有。有报错要看日志。下面简单罗列下常见的问题,大多文档上都有提到的。
1、没有返回数据集:
在存储过程中的操作语句之前加上set nocount on 或者在数据集exec调用存储过程的前面加上这句。当S
- linux 系统cpu 内存等信息查看
墙头上一根草
cpu内存liunx
1 查看CPU
1.1 查看CPU个数
# cat /proc/cpuinfo | grep "physical id" | uniq | wc -l
2
**uniq命令:删除重复行;wc –l命令:统计行数**
1.2 查看CPU核数
# cat /proc/cpuinfo | grep "cpu cores" | u
- Spring中的AOP
aijuans
springAOP
Spring中的AOP
Written by Tony Jiang @ 2012-1-18 (转)何为AOP
AOP,面向切面编程。
在不改动代码的前提下,灵活的在现有代码的执行顺序前后,添加进新规机能。
来一个简单的Sample:
目标类:
[java]
view plain
copy
print
?
package&nb
- placeholder(HTML 5) IE 兼容插件
alxw4616
JavaScriptjquery jQuery插件
placeholder 这个属性被越来越频繁的使用.
但为做HTML 5 特性IE没能实现这东西.
以下的jQuery插件就是用来在IE上实现该属性的.
/**
* [placeholder(HTML 5) IE 实现.IE9以下通过测试.]
* v 1.0 by oTwo 2014年7月31日 11:45:29
*/
$.fn.placeholder = function
- Object类,值域,泛型等总结(适合有基础的人看)
百合不是茶
泛型的继承和通配符变量的值域Object类转换
java的作用域在编程的时候经常会遇到,而我经常会搞不清楚这个
问题,所以在家的这几天回忆一下过去不知道的每个小知识点
变量的值域;
package 基础;
/**
* 作用域的范围
*
* @author Administrator
*
*/
public class zuoyongyu {
public static vo
- JDK1.5 Condition接口
bijian1013
javathreadConditionjava多线程
Condition 将 Object 监视器方法(wait、notify和 notifyAll)分解成截然不同的对象,以便通过将这些对象与任意 Lock 实现组合使用,为每个对象提供多个等待 set (wait-set)。其中,Lock 替代了 synchronized 方法和语句的使用,Condition 替代了 Object 监视器方法的使用。
条件(也称为条件队列或条件变量)为线程提供了一
- 开源中国OSC源创会记录
bijian1013
hadoopsparkMemSQL
一.Strata+Hadoop World(SHW)大会
是全世界最大的大数据大会之一。SHW大会为各种技术提供了深度交流的机会,还会看到最领先的大数据技术、最广泛的应用场景、最有趣的用例教学以及最全面的大数据行业和趋势探讨。
二.Hadoop
&nbs
- 【Java范型七】范型消除
bit1129
java
范型是Java1.5引入的语言特性,它是编译时的一个语法现象,也就是说,对于一个类,不管是范型类还是非范型类,编译得到的字节码是一样的,差别仅在于通过范型这种语法来进行编译时的类型检查,在运行时是没有范型或者类型参数这个说法的。
范型跟反射刚好相反,反射是一种运行时行为,所以编译时不能访问的变量或者方法(比如private),在运行时通过反射是可以访问的,也就是说,可见性也是一种编译时的行为,在
- 【Spark九十四】spark-sql工具的使用
bit1129
spark
spark-sql是Spark bin目录下的一个可执行脚本,它的目的是通过这个脚本执行Hive的命令,即原来通过
hive>输入的指令可以通过spark-sql>输入的指令来完成。
spark-sql可以使用内置的Hive metadata-store,也可以使用已经独立安装的Hive的metadata store
关于Hive build into Spark
- js做的各种倒计时
ronin47
js 倒计时
第一种:精确到秒的javascript倒计时代码
HTML代码:
<form name="form1">
<div align="center" align="middle"
- java-37.有n 个长为m+1 的字符串,如果某个字符串的最后m 个字符与某个字符串的前m 个字符匹配,则两个字符串可以联接
bylijinnan
java
public class MaxCatenate {
/*
* Q.37 有n 个长为m+1 的字符串,如果某个字符串的最后m 个字符与某个字符串的前m 个字符匹配,则两个字符串可以联接,
* 问这n 个字符串最多可以连成一个多长的字符串,如果出现循环,则返回错误。
*/
public static void main(String[] args){
- mongoDB安装
开窍的石头
mongodb安装 基本操作
mongoDB的安装
1:mongoDB下载 https://www.mongodb.org/downloads
2:下载mongoDB下载后解压
 
- [开源项目]引擎的关键意义
comsci
开源项目
一个系统,最核心的东西就是引擎。。。。。
而要设计和制造出引擎,最关键的是要坚持。。。。。。
现在最先进的引擎技术,也是从莱特兄弟那里出现的,但是中间一直没有断过研发的
 
- 软件度量的一些方法
cuiyadll
方法
软件度量的一些方法http://cuiyingfeng.blog.51cto.com/43841/6775/在前面我们已介绍了组成软件度量的几个方面。在这里我们将先给出关于这几个方面的一个纲要介绍。在后面我们还会作进一步具体的阐述。当我们不从高层次的概念级来看软件度量及其目标的时候,我们很容易把这些活动看成是不同而且毫不相干的。我们现在希望表明他们是怎样恰如其分地嵌入我们的框架的。也就是我们度量的
- XSD中的targetNameSpace解释
darrenzhu
xmlnamespacexsdtargetnamespace
参考链接:
http://blog.csdn.net/colin1014/article/details/357694
xsd文件中定义了一个targetNameSpace后,其内部定义的元素,属性,类型等都属于该targetNameSpace,其自身或外部xsd文件使用这些元素,属性等都必须从定义的targetNameSpace中找:
例如:以下xsd文件,就出现了该错误,即便是在一
- 什么是RAID0、RAID1、RAID0+1、RAID5,等磁盘阵列模式?
dcj3sjt126com
raid
RAID 1又称为Mirror或Mirroring,它的宗旨是最大限度的保证用户数据的可用性和可修复性。 RAID 1的操作方式是把用户写入硬盘的数据百分之百地自动复制到另外一个硬盘上。由于对存储的数据进行百分之百的备份,在所有RAID级别中,RAID 1提供最高的数据安全保障。同样,由于数据的百分之百备份,备份数据占了总存储空间的一半,因而,Mirror的磁盘空间利用率低,存储成本高。
Mir
- yii2 restful web服务快速入门
dcj3sjt126com
PHPyii2
快速入门
Yii 提供了一整套用来简化实现 RESTful 风格的 Web Service 服务的 API。 特别是,Yii 支持以下关于 RESTful 风格的 API:
支持 Active Record 类的通用API的快速原型
涉及的响应格式(在默认情况下支持 JSON 和 XML)
支持可选输出字段的定制对象序列化
适当的格式的数据采集和验证错误
- MongoDB查询(3)——内嵌文档查询(七)
eksliang
MongoDB查询内嵌文档MongoDB查询内嵌数组
MongoDB查询内嵌文档
转载请出自出处:http://eksliang.iteye.com/blog/2177301 一、概述
有两种方法可以查询内嵌文档:查询整个文档;针对键值对进行查询。这两种方式是不同的,下面我通过例子进行分别说明。
二、查询整个文档
例如:有如下文档
db.emp.insert({
&qu
- android4.4从系统图库无法加载图片的问题
gundumw100
android
典型的使用场景就是要设置一个头像,头像需要从系统图库或者拍照获得,在android4.4之前,我用的代码没问题,但是今天使用android4.4的时候突然发现不灵了。baidu了一圈,终于解决了。
下面是解决方案:
private String[] items = new String[] { "图库","拍照" };
/* 头像名称 */
- 网页特效大全 jQuery等
ini
JavaScriptjquerycsshtml5ini
HTML5和CSS3知识和特效
asp.net ajax jquery实例
分享一个下雪的特效
jQuery倾斜的动画导航菜单
选美大赛示例 你会选谁
jQuery实现HTML5时钟
功能强大的滚动播放插件JQ-Slide
万圣节快乐!!!
向上弹出菜单jQuery插件
htm5视差动画
jquery将列表倒转顺序
推荐一个jQuery分页插件
jquery animate
- swift objc_setAssociatedObject block(version1.2 xcode6.4)
啸笑天
version
import UIKit
class LSObjectWrapper: NSObject {
let value: ((barButton: UIButton?) -> Void)?
init(value: (barButton: UIButton?) -> Void) {
self.value = value
- Aegis 默认的 Xfire 绑定方式,将 XML 映射为 POJO
MagicMa_007
javaPOJOxmlAegisxfire
Aegis 是一个默认的 Xfire 绑定方式,它将 XML 映射为 POJO, 支持代码先行的开发.你开发服 务类与 POJO,它为你生成 XML schema/wsdl
XML 和 注解映射概览
默认情况下,你的 POJO 类被是基于他们的名字与命名空间被序列化。如果
- js get max value in (json) Array
qiaolevip
每天进步一点点学习永无止境max纵观千象
// Max value in Array
var arr = [1,2,3,5,3,2];Math.max.apply(null, arr); // 5
// Max value in Jaon Array
var arr = [{"x":"8/11/2009","y":0.026572007},{"x"
- XMLhttpRequest 请求 XML,JSON ,POJO 数据
Luob.
POJOjsonAjaxxmlXMLhttpREquest
在使用XMlhttpRequest对象发送请求和响应之前,必须首先使用javaScript对象创建一个XMLHttpRquest对象。
var xmlhttp;
function getXMLHttpRequest(){
if(window.ActiveXObject){
xmlhttp:new ActiveXObject("Microsoft.XMLHTTP
- jquery
wuai
jquery
以下防止文档在完全加载之前运行Jquery代码,否则会出现试图隐藏一个不存在的元素、获得未完全加载的图像的大小 等等
$(document).ready(function(){
jquery代码;
});
<script type="text/javascript" src="c:/scripts/jquery-1.4.2.min.js&quo