Tomcat处理HTTP请求源码分析

很多开源应用服务器都是集成tomcat作为web container的,而且对于tomcat的servlet container这部分代码很少改动。这样,这些应用服务器的性能基本上就取决于Tomcat处理HTTP请求的connector模块的性能。本文首先从应用层次分析了tomcat所有的connector种类及用法,接着从架构上分析了connector模块在整个tomcat中所处的位置,最后对connector做了详细的源代码分析。并且我们以Http11NioProtocol为例详细说明了tomcat是如何通过实现ProtocolHandler接口而构建connector的。

通过本文的学习,应该可以轻松做到将tomcat做为web container集成到第三方系统,并且自定义任何你想要的高性能的HTTP连接器。

1 Connector介绍

1.1 Connector的种类

Tomcat源码中与connector相关的类位于org.apache.coyote包中,Connector分为以下几类:

  • Http Connector, 基于HTTP协议,负责建立HTTP连接。它又分为BIO Http Connector与NIO Http Connector两种,后者提供非阻塞IO与长连接Comet支持。
  • AJP Connector, 基于AJP协议,AJP是专门设计用来为tomcat与http服务器之间通信专门定制的协议,能提供较高的通信速度和效率。如与Apache服务器集成时,采用这个协议。
  • APR HTTP Connector, 用C实现,通过JNI调用的。主要提升对静态资源(如HTML、图片、CSS、JS等)的访问性能。现在这个库已独立出来可用在任何项目中。Tomcat在配置APR之后性能非常强劲。

1.2 Connector的配置

对Connector的配置位于conf/server.xml文件中。

1.2.1 BIO HTTP/1.1 Connector配置

一个典型的配置如下:

<Connector port=”8080” protocol=”HTTP/1.1” maxThreads=”150” 
connectionTimeout=”20000” redirectPort=”8443”

其它一些重要属性如下:

  • acceptCount : 接受连接request的最大连接数目,默认值是10
  • address : 绑定IP地址,如果不绑定,默认将绑定任何IP地址
  • allowTrace : 如果是true,将允许TRACE HTTP方法
  • compressibleMimeTypes : 各个mimeType, 以逗号分隔,如text/html,text/xml
  • compression : 如果带宽有限的话,可以用GZIP压缩
  • connectionTimeout : 超时时间,默认为60000ms (60s)
  • maxKeepAliveRequest : 默认值是100
  • maxThreads : 处理请求的Connector的线程数目,默认值为200

如果是SSL配置,如下:

<Connector port="8181" protocol="HTTP/1.1" SSLEnabled="true" 
    maxThreads="150" scheme="https" secure="true" 
    clientAuth="false" sslProtocol = "TLS" 
    address="0.0.0.0" 
    keystoreFile="E:/java/jonas-full-5.1.0-RC3/conf/keystore.jks" 
    keystorePass="changeit" /> 

其中,keystoreFile为证书位置,keystorePass为证书密码

1.2.2 NIO HTTP/1.1 Connector配置

<Connector port=”8080” protocol=”org.apache.coyote.http11.Http11NioProtocol” 
    maxThreads=”150” connectionTimeout=”20000” redirectPort=”8443” 

1.2.3 Native APR Connector配置

  1. ARP是用C/C++写的,对静态资源(HTML,图片等)进行了优化。所以要下载本地库

    tcnative-1.dll与openssl.exe,将其放在%tomcat%\bin目录下。

    下载地址是:http://tomcat.heanet.ie/native/1.1.10/binaries/win32/

  2. 在server.xml中要配置一个Listener,如下图。这个配置tomcat是默认配好的。
    <!--APR library loader. Documentation at /docs/apr.html --> 
    <Listener className="org.apache.catalina.core.AprLifecycleListener" SSLEngine="on" /> 
  3. 配置使用APR connector
    <Connector port=”8080” protocol=”org.apache.coyote.http11.Http11AprProtocol

    maxThreads=”150” connectionTimeout=”20000” redirectPort=”8443”

  4. 如果配置成功,启动tomcat,会看到如下信息:
    org.apache.coyote.http11.Http11AprProtocol init 

2 Connector在Tomcat中所处的位置

2.1 Tomcat架构

Tomcat处理HTTP请求源码分析_第1张图片

图2-1 Tomcat架构

  • Server(服务器)是Tomcat构成的顶级构成元素,所有一切均包含在Server中,Server的实现类StandardServer可以包含一个到多个Services;
  • 次顶级元素Service的实现类为StandardService调用了容器(Container)接口,其实是调用了Servlet Engine(引擎),而且StandardService类中也指明了该Service归属的Server;
  • 接下来次级的构成元素就是容器(Container),主机(Host)、上下文(Context)和引擎(Engine)均继承自Container接口,所以它们都是容器。但是,它们是有父子关系的,在主机(Host)、上下文(Context)和引擎(Engine)这三类容器中,引擎是顶级容器,直接包含是主机容器,而主机容器又包含上下文容器,所以引擎、主机和上下文从大小上来说又构成父子关系,虽然它们都继承自Container接口。
  • 连接器(Connector)将Service和Container连接起来,首先它需要注册到一个Service,它的作用就是把来自客户端的请求转发到Container(容器),这就是它为什么称作连接器的原因。

故我们从功能的角度将Tomcat源代码分成5个子模块,它们分别是:

  1. Jsper子模块:这个子模块负责jsp页面的解析、jsp属性的验证,同时也负责将jsp页面动态转换为java代码并编译成class文件。在Tomcat源代码中,凡是属于org.apache.jasper包及其子包中的源代码都属于这个子模块;
  2. Servlet和Jsp规范的实现模块:这个子模块的源代码属于javax.servlet包及其子包,如我们非常熟悉的javax.servlet.Servlet接口、javax.servet.http.HttpServlet类及javax.servlet.jsp.HttpJspPage就位于这个子模块中;
  3. Catalina子模块:这个子模块包含了所有以org.apache.catalina开头的java源代码。该子模块的任务是规范了Tomcat的总体架构,定义了Server、Service、Host、Connector、Context、Session及Cluster等关键组件及这些组件的实现,这个子模块大量运用了Composite设计模式。同时也规范了Catalina的启动及停止等事件的执行流程。从代码阅读的角度看,这个子模块应该是我们阅读和学习的重点。
  4. Connectors子模块:如果说上面三个子模块实现了Tomcat应用服务器的话,那么这个子模块就是Web服务器的实现。所谓连接器(Connector)就是一个连接客户和应用服务器的桥梁,它接收用户的请求,并把用户请求包装成标准的Http请求(包含协议名称,请求头Head,请求方法是Get还是Post等等)。同时,这个子模块还按照标准的Http协议,负责给客户端发送响应页面,比如在请求页面未发现时,connector就会给客户端浏览器发送标准的Http 404错误响应页面。
  5. Resource子模块:这个子模块包含一些资源文件,如Server.xml及Web.xml配置文件。严格说来,这个子模块不包含java源代码,但是它还是Tomcat编译运行所必需的。

2.2 Tomcat运行流程

Tomcat处理HTTP请求源码分析_第2张图片

图2-2 tomcat运行流程

假设来自客户的请求为:http://localhost:8080/test/index.jsp

  1. 请求被发送到本机端口8080,被在那里侦听的Coyote HTTP/1.1 Connector获得
  2. Connector把该请求交给它所在的Service的Engine来处理,并等待Engine的回应
  3. Engine获得请求localhost:8080/test/index.jsp,匹配它所有虚拟主机Host
  4. Engine匹配到名为localhost的Host(即使匹配不到也把请求交给该Host处理,因为该Host被定义为该Engine的默认主机)
  5. localhost Host获得请求/test/index.jsp,匹配它所拥有的所有Context
  6. Host匹配到路径为/test的Context(如果匹配不到就把该请求交给路径名为""的Context去处理)
  7. path="/test"的Context获得请求/index.jsp,在它的mapping table中寻找对应的servlet
  8. Context匹配到URL PATTERN为*.jsp的servlet,对应于JspServlet类
  9. 构造HttpServletRequest对象和HttpServletResponse对象,作为参数调用JspServlet的doGet或doPost方法
  10. Context把执行完了之后的HttpServletResponse对象返回给Host
  11. Host把HttpServletResponse对象返回给Engine
  12. Engine把HttpServletResponse对象返回给Connector
  13. Connector把HttpServletResponse对象返回给客户browser

3 Connector源码分析

3.1 Tomcat的启动分析与集成设想

我们知道,启动tomcat有两种方式:

  • 双击bin/startup.bat
  • 运行bin/catalina.bat run

它们对应于Bootstrap与Catalina两个类,我们现在只关心Catalina这个类,这个类使用Apache Digester解析conf/server.xml文件生成tomcat组件,然后再调用Embedded类的start方法启动tomcat。

所以,集成Tomcat的方式就有以下两种了:

  • 沿用tomcat自身的server.xml
  • 自己定义一个xml格式来配置tocmat的各参数,自己再写解析这段xml,然后使用tomcat提供的API根据这些xml来生成Tomcat组件,最后调用Embedded类的start方法启动tomcat

个人觉得第一种方式要优越,给开发者比较好的用户体验,如果使用这种,直接模仿Catalina类的方法即可实现集成。

目前,JOnAS就使用了这种集成方式,JBoss、GlassFish使用的第二种自定义XML的方式。

3.2 Connector类图与顺序图

Tomcat处理HTTP请求源码分析_第3张图片

图3-1 Connector相关类图

Tomcat处理HTTP请求源码分析_第4张图片

图3-2 Connector工作流程顺序图

从上面二图中我们可以得到如下信息:

  1. Tomcat中有四种容器(Context、Engine、Host、Wrapper),前三者常见,第四个不常见但它也是实现了Container接口的容器
  2. 如果要自定义一个Connector的话,只需要实现ProtocolHander接口,该接口定义如下:

图3-3 自定义connector时需实现的ProtocolHandler接口

Tomcat以HTTP(包括BIO与NIO)、AJP、APR、内存四种协议实现了该接口(它们分别是:AjpAprProtocol、AjpProtocol、Http11AprProtocol、Http11NioProtocol、Http11Protocal、JkCoyoteHandler、MemoryProtocolHandler),要使用哪种Connector就在conf/server.xml中配置,在Connector的构造函数中会通过反射实例化所配置的实现类:

<Connector port="8181" 
   protocol="org.apache.coyote.http11.Http11AprProtocol " /> 

3.3 Connector的工作流程

下面我们以Http11AprProtocol为例说明Connector的工作流程。

  1. 它将工作委托给NioEndpoint类。在NioEndpoint类的init方法中构建一个SocketServer(当然,不同的实现类会有一些微小的变化,例如如果是NIO,它构建的就是SocketServerChannel)
  2. 在NioEndpoint.Acceptor类中会接收一个客户端新的连接请求,如下图:

    Tomcat处理HTTP请求源码分析_第5张图片

  3. 在NioEndpoint类中,有一个内部接口Handle,该接口定义如下:

  4. 在Http11NioProtocol类中实现了Handle这个内部接口,并调用Http11NioProcessor类(该类实现了ActionHook回调接口)。在Response类中会调用ActionHook实现类的相关方法的,Response类的action方法如下:

    Tomcat处理HTTP请求源码分析_第6张图片

  5. Http11NioProcessor的process实现方法中,会通过Adapter来调用Servler容器生成响应结果。

4 如何实现Connector

由上面的介绍我们可以知道,实现Connector就是实现ProtocolHander接口的过程。

AjpAprProtocol、AjpProtocol、Http11AprProtocol、Http11Protocol、JkCoyoteHandler、MemoryProtocolHandler这些实现类的实现流程与Http11NioProtocol相同,下面我们以Http11NioProtocol为类重点说明tomcat中如何实现ProtocolHander接口的。

Http11NioProtocol实现了ProtocolHander接口,它将所有的操作委托给NioEndpoint类去做,如下图:

Tomcat处理HTTP请求源码分析_第7张图片

NioEndpoint类中的init方法中首先以普通阻塞方式启动了SocketServer:

NioEndpoint类的start方法是关键,如下:

可以看出,在start方法中启动了两个线程和一个线程池:

  • Acceptor线程,该线程以普通阻塞方式接收客户端请求(socket.accep()),将客户Socket交由线程池是处理,线程池要将该Socket配置成非阻塞模式(socket.configureBlocking(false)),并且向Selector注册READ事件。该线程数目可配置,默认为1个。
  • Poller线程,由于Acceptor委托线程为客户端Socket注册了READ事件,当READ准备好时,就会进入Poller线程的循环,Poller线程也是委托线程池去做,线程池将NioChannel加入到ConcurrentLinkedQueue<NioChannel>队列中。该线程数目可配置,默认为1个。
  • 线程池,就是上面说的做Acceptor与Poller线程委托要做的事情。

4.1 Init接口实现方法中阻塞方式启动ServerSocketChannel

在Init接口实现方法中阻塞方式启动ServerSocketChannel。

4.2 Start接口实现方法中启动所有线程

Start方法中启动了线程池,acceptor线程与Poller线程。其中acceptor与poller线程一般数目为1,当然,数目也可配置。

Tomcat处理HTTP请求源码分析_第8张图片

可以看出,线程池有两种实现方式:

  • 普通queue + wait + notify方式,默认使用的方式,据说实际测试这种比下种效率高
  • JDK1.5自带的线程池方式

4.3 Acceptor线程接收客户请求、注册READ事件

在Acceptor线程中接收了客户请求,同时委托线程池注册READ事件。

  1. 在Acceptior线程中接收了客户请求(serverSock.accept())

  2. 委托线程池处理

    Tomcat处理HTTP请求源码分析_第9张图片

  3. 在线程池的Worker线程的run方法中有这么几句:

    Tomcat处理HTTP请求源码分析_第10张图片

在setSocketOptions方法中,首先将socket配置成非阻塞模式:

Tomcat处理HTTP请求源码分析_第11张图片

在setSocketOptions方法中,最后调用getPoller0().register(channel);一句为SocketChannel注册READ事件,register方法代码如下(注意:这是Poller线程的方法):

Tomcat处理HTTP请求源码分析_第12张图片

其中attachment的结构如下,它可以看做是一个共享的数据结构:

Tomcat处理HTTP请求源码分析_第13张图片

4.4 Poller线程读请求、生成响应数据、注册WRITE事件

  1. 在上面说的setSocketOptions方法中调用Poller线程的register方法注册读事件之后,当READ准备就绪之后,就开始读了。下面代码位于Poller线程的run方法之中:

    Tomcat处理HTTP请求源码分析_第14张图片

  2. 可以看到,可读之后调用processSocket方法,该方法将读处理操作委拖给线程池处理(注意此时加入到线程池的是NioChannel,不是SocketChannel):

    Tomcat处理HTTP请求源码分析_第15张图片

  3. 线程池的Worker线程中的run方法中的部分代码如下(请注意handler.process(socket)这一句):

    Tomcat处理HTTP请求源码分析_第16张图片

    注意:

    • 调用了hanler.process(socket)来生成响应数据)
    • 数据生成完之后,注册WRITE事件的,代码如下:

4.5 Handle接口实现类通过Adpater调用Servlet容器生成响应数据

NioEndpoint类中的Handler接口定义如下:

Tomcat处理HTTP请求源码分析_第17张图片

其中process方法通过Adapter来调用Servlet Container生成返回结果。Adapter接口定义如下:

Tomcat处理HTTP请求源码分析_第18张图片

4.6 小结

实现一个tomcat连接器Connector就是实现ProtocolHander接口的过程。Connector用来接收Socket Client端的请求,通过内置的线程池去调用Servlet Container生成响应结果,并将响应结果同步或异步的返回给Socket Client。在第三方应用集成tomcat作为Web容器时,一般不会动Servlet Container端的代码,那么connector的性能将是整个Web容器性能的关键。



你可能感兴趣的:(Tomcat处理HTTP请求源码分析)