- 《编程小白必看!字符加减法开启大小写转换之门,解锁数学分析方法密码,列方程思想》
1zero10
c语言算法
字符加减法的应用1.输入小写字母,输出大写字母首先肯定有定义变量ch;并且让我们可以在黑框输入一个变量,也就是任意一个小写字母charch;scanf("%c\n",ch);接着分析小写字母和大写字母的联系:举例分析,比如b在小写字母表排第二位,而B在大写字母表里也排第二位小写字母和大写字母都有26个所以可以利用排位一致的特点进行方程的构造设小写字母为ch(上面已经设了)设大写字母为y到这里还毫无
- 《机器学习数学基础》补充资料:求解线性方程组的克拉默法则
CS创新实验室
机器学习数学基础机器学习人工智能机器学习数学基础
《机器学习数学基础》中并没有将解线性方程组作为重点,只是在第2章2.4.2节做了比较完整的概述。这是因为,如果用程序求解线性方程组,相对于高等数学教材中强调的手工求解,要简单得多了。本文是关于线性方程组的拓展,供对此有兴趣的读者阅读。1.线性方程组的解位于一条直线不失一般性,这里讨论三维空间的情况,对于多维空间,可以由此外推,毕竟三维空间便于想象和作图说明。设矩阵A=[124135]\pmb{A}
- 【第11章:生成式AI与创意应用—11.2 音频与音乐生成的探索与实践】
再见孙悟空_
#【深度学习・探索智能核心奥秘】人工智能音视频自然语言处理NLP深度学习生成式AIDeepSeek
凌晨三点的录音棚里,制作人小林对着空荡荡的混音台抓狂——广告方临时要求将电子舞曲改编成巴洛克风格,还要保留"赛博朋克"元素。当他在AI音乐平台输入"维瓦尔弟遇见霓虹灯"的瞬间,一段融合羽管键琴与合成器的奇妙旋律喷涌而出,这场人与机器的音乐狂想曲正式拉开帷幕。一、声波炼金术:从物理建模到神经作曲1.1传统音频生成的三大门派在AI登场之前,音乐科技已经历三次革命:物理建模派(1980s):用微分方程模
- c语言正整数幂尾数循环问题(同余定理)
ᴅᴜᴅ
算法
众所周知,2的正整数次幂最后一位数总是不断的在重复2,4,8,6,2,4,8,6…2,4,8,6,2,4,8,6…我们说2的正整数次幂最后一位的循环长度是4(实际上4的倍数都可以说是循环长度,但我们只考虑最小的循环长度)这时乐乐的问题就出来了:是不是只有最后一位才有这样的循环呢?对于一个整数n的正整数次幂来说,它的后L(L=1,2)位是否会发生循环?如果循环的话,循环长度是多少呢?注意:如果n的某
- 【二分搜索 C/C++】洛谷P1024 一元三次方程求解
仟濹
算法学习笔记c语言c++算法
2025-02-13-第52篇作者(Author):郑龙浩/仟濹(CSND)【二分搜索】P1024一元三次方程求解题目描述有形如:ax3+bx2+cx+d=0ax^3+bx^2+cx+d=0ax3+bx2+cx+d=0这样的一个一元三次方程。给出该方程中各项的系数(a,b,c,da,b,c,da,b,c,d均为实数),并约定该方程存在三个不同实根(根的范围在−100-100−100至1001001
- python怎么安装sympy库_SymPy库常用函数
weixin_39528559
简介SymPy是一个符号计算的Python库。它的目标是成为一个全功能的计算机代数系统,同时保持代码简洁、易于理解和扩展。它完全由Python写成,不依赖于外部库。SymPy支持符号计算、高精度计算、模式匹配、绘图、解方程、微积分、组合数学、离散数学、几何学、概率与统计、物理学等方面的功能。(来自维基百科的描述)Sympy安装方法安装命令:pipinstallsympy基本数值类型实数,有理数和整
- python:求解爱因斯坦场方程
belldeep
pythonpython爱因斯坦
在物理学中,爱因斯坦的广义相对论(GeneralRelativity)是描述引力如何作用于时空的理论。广义相对论由爱因斯坦在1915年提出,并被阿尔伯特·爱因斯坦、纳森·罗森和纳尔逊·曼德尔斯塔姆共同发展。广义相对论的核心方程是爱因斯坦场方程,它描述了时空的几何结构如何由物质的分布决定。如果你想用Python来探索或模拟广义相对论中的某些现象,你可以从以下几个方面入手:1.使用现有的库Python
- PCS的dq坐标系控制方程化简推导
weixin_42668920
电力电子算法算法电力电子
αβ坐标系下的控制方程为:Uαβ–Eαβ=RIαβ+Ld(Iαβ)/dtUαβ–Eαβ-RIαβ=Ld(Iαβ)/dt令Uαβ–Eαβ-RIαβ=Xαβ有:Xαβ=Ld(Iαβ)/dt根据dq逆变换公式Xαβ=[cosθ-sinθ][Xd][sinθcosθ][Xq]得到Xα=Xdcosθ–XqsinθXβ=Xdsinθ+Xqcos带入Xαβ=Ld(Iαβ)/dt得到Xdcosθ–Xqsinθ=L
- 差分解方程
やっはろ
django
差分解方程差分法在数值求解偏微分方程(PDEs)和常微分方程(ODEs)时,可以分为隐式格式和显式格式。以下是两者的主要区别:显式格式(ExplicitScheme)时间推进:显式格式在每一个时间步直接计算出下一个时间步的解。不需要求解非线性方程组,因为每个时间步的解可以直接从上一个时间步的解计算得出。稳定性:通常要求时间步长较小,以保证数值稳定性。稳定性与时间步长和空间步长的比值有关,通常由一个
- 人工智能的本质解构:从二进制桎梏到造物主悖论
Somnolence.·.·.·.
人工智能人工智能ai
一、数学牢笼中的困兽:人工智能的0-1本质人工智能的底层逻辑是数学暴力的具象化演绎。晶体管开关的物理震荡被抽象为布尔代数的0-1序列,冯·诺依曼架构将思维简化为存储器与运算器的机械对话。即使深度神经网络看似模拟人脑突触,其本质仍是矩阵乘法的迭代游戏——波士顿动力机器人的空翻动作不过是微分方程求解的物理引擎呈现,AlphaGo的围棋神话只是蒙特卡洛树搜索的概率统计。这种基于有限离散数学的架构,注定人
- erf 和 erfc 函数介绍以及在通信系统中的应用
正是读书时
知识点概率论信息与通信
1.误差函数(erf)误差函数\(\text{erf}(x)\)是一种特殊函数,在概率、统计和偏微分方程中有广泛应用。它的定义为:\[\text{erf}(x)=\frac{2}{\sqrt{\pi}}\int_0^xe^{-t^2}\,dt\]特性:-\(\text{erf}(0)=0\)-\(\text{erf}(\infty)=1\)-\(\text{erf}(-x)=-\text{erf}
- 工程计算4——线性方程组的问题敏感性
sda42342342423
math
扰动方程方程组(A+△A)x=b+△b为方程Ax=b的扰动方程△A,△b为由舍入误差所产生的扰动矩阵和扰动向量近似解与Ax=b的解x的相对误差不大称为良态方程,否则为病态方程。向量和矩阵的范数为了研究线性方程组近似解的误差估计和迭代法的收敛性,引入的对向量和矩阵的度量。向量的范数定义设XϵRn,||X||表示定义在Rn上的一个实值函数,称之为X的范数,性质非负性:即对一切X∈Rn,X≠0,||X|
- 不坑盒子Office插件:全能助手,办公效率的革命性提升
不坑老师
microsoftwordexcelpowerpointwps
在快节奏的办公环境中,时间就是金钱,效率就是生命。不坑盒子Office插件,一款专为Word、Excel、PPT和WPS三件套设计的全能办公助手,致力于让办公工作变得更加轻松、高效。一键式自动化,让复杂工作变简单自动排版:快速设置正文、标题格式,告别手动调整。OCR文字识别:图片文字快速转换,需要腾讯云OCR接口支持。化学公式编辑:自动排版化学方程式,让科学文档更专业。表格智能填充:一键编号填充,
- LeetCode--32. 最长有效括号【栈和dp】
Rinai_R
LeetCodeleetcode算法职场和发展golang数据结构动态规划
32.最长有效括号前言分享一下dp和栈两个方法正文给你一个只包含'('和')'的字符串,找出最长有效(格式正确且连续)括号子串的长度。这道题与20.有效的括号类似,但是这道题需要计算出最长的有效括号字串的长度,所以做法并不完全一样。动态规划该题目dp方法最难的就是得出状态转移方程,只要克服了这一点,剩下都很简单,下面,我们以字符串"((())()("为例子。从左向右遍历,设定f[i]为包含当前下标
- 【LeetCode周赛】6433.矩阵中移动的最大次数
积跬步方千里
LeetCodeleetcode算法
动态规划五部曲classSolution{public:intmaxMoves(vector>&grid){/*动态规划解决单序列问题:根据题目的特点找出当前遍历元素对应的最优解(或解的数目)和前面若干元素(通常是一个或两个)的最优解(或解的数目)的关系,并以此找出相应的状态转移方程。从题目的描述来看,需要从当前遍历的元素dp更新未来的dp值,这显然不符合动态规划的思想,所以需要将问题进行转换,转
- 解锁动态规划的奥秘
zxfbx
动态规划算法
前言:在动态规划的众多问题中,多状态DP问题是一个非常重要的类别。它的难点在于如何设计合适的状态表示和转移方程,从而高效地解决问题。多状态DP的核心思想在于:针对问题的不同属性或限制条件,将状态表示扩展为多个维度,使得状态可以更加精确地描述问题的子结构。这种方法既可以帮助我们更好地分解问题,又能够在求解过程中保留更多的信息,从而为最终的结果提供完整的支持。在实际应用中,多状态DP常用于解决路径规划
- 背包入门——LeetCode416. 分割等和子集
sunnyLKX
LeetCodejava动态规划leetcode算法数据结构
题目描述:给定一个只包含正整数的非空数组。是否可以将这个数组分割成两个子集,使得两个子集的元素和相等。注意:每个数组中的元素不会超过100数组的大小不会超过200示例1:输入:[1,5,11,5]输出:true解释:数组可以分割成[1,5,5]和[11].示例2:输入:[1,2,3,5]输出:false解释:数组不能分割成两个元素和相等的子集.思路:动态规划的基本流程是定义状态并找到状态转移方程,
- 2.【线性代数】——矩阵消元
sda42342342423
math线性代数矩阵
二矩阵消元1.消元法2.单行或者单列的矩阵乘法2.1单行矩阵乘法2.2单列矩阵乘法3.用矩阵记录消元过程(初等矩阵)【行的线性组合(数乘和加法)】3.1row2-3row1的矩阵描述3.2row3-2row2的矩阵描述3.3矩阵乘法的性质4.用矩阵记录消元过程(置换矩阵)行列交换4.1行交换4.1列交换5.逆矩阵1.消元法求解方程组{x+2y+z=23x+8y+z=124y+z=2\begin{c
- 高等代数复习:线性空间
爱吃白饭
高等代数线性代数学习笔记
文章目录线性空间定义和性质线性相关性与秩基与维数矩阵的秩同构坐标子空间子空间的定义和性质子空间的和与交直和陪集和商空间解线性方程组本篇文章适合个人复习翻阅,不建议新手入门使用线性空间定义和性质定义:(线性空间)设集合VVV和数域K\mathbb{K}K,在VVV上定义加法+:V×V→V,(α,β)↦α+β+:V\timesV\toV,(\alpha,\beta)\mapsto\alpha+\bet
- 数学建模与MATLAB实现:稳定状态模型与资源管理策略
青橘MATLAB学习
#数学建模Matlab编程实验数学建模算法
引言在实际问题中,动态过程的瞬时性态往往难以直接分析,而研究其稳定状态的特征则更具实际意义。本章介绍如何通过微分方程稳定性理论,结合再生资源管理、种群竞争等案例,分析系统的平衡点及稳定性,为实际决策提供数学依据。一、微分方程稳定性理论1.1基本概念自治系统:若微分方程组不显含时间变量ttt,则称为自治系统。例如:dxdt=F(x)\frac{dx}{dt}=F(x)dtdx=F(x)非自治系统可通
- Zane的线代学习笔记 #6 置换与转置
ZaneYooo
Zane的线代学习笔记学习笔记算法
前言上篇笔记的末尾我们提到过置换矩阵和转置的内容,不过并不完整,在这篇笔记中,我会对这两个知识点进行补充,讲完之后,我们的线性方程部分就基本上讲完了。正文1.排列与置换矩阵上篇笔记的末尾提到了置换矩阵的概念,不过并不完整,现在,我们将会把一些不严谨的地方补上,然后将上一篇的置换矩阵部分做一个归纳整理。首先,上篇笔记我们说置换矩阵是单位矩阵进行行交换得到的(或者就是单位矩阵本身),但是为什么说置换矩
- 2021-09-09二分法求方程近似解【C语言】
xxxjrr
算法学习c语言
文章目录1.题目描述2.题解思路与算法3.代码1.题目描述二分法是一种求解方程近似根的方法。对于一个函数f(x),使用二分法求f(x)近似解的时候,我们先设定一个迭代区间(在这个题目上,我们之后给出了的两个初值决定的区间[−20,20]),区间两端自变量x的值对应的f(x)值是异号的,之后我们会计算出两端x的中点位置x′所对应的f(x′),然后更新我们的迭代区间,确保对应的迭代区间的两端x的值对应
- 代码随想录Day43 | 300.最长递增子序列,674.最长连续递增序列,718.最长重复子数组
Sanctyzl
代码随想录算法训练营打卡算法动态规划leetcodejava数据结构
代码随想录Day43|300.最长递增子序列,674.最长连续递增序列,718.最长重复子数组300.最长递增子序列dp[i]定义:从0-i范围内计算,以nums[i]为结尾的最长严格递增子序列的长度。状态转移方程:if(nums[i]>nums[j])dp[i]=Math.max(dp[i],dp[j]+1);classSolution{publicintlengthOfLIS(int[]num
- 一阶系统和二阶系统
不知道是谁2
程序人生
一阶系统和二阶系统是动态系统分析中的两个基本概念,它们的主要区别在于系统的响应特性、阶次以及对输入信号的处理方式:1.**阶数**:-**一阶系统**:这类系统只有一个积分项,如常微分方程中的形式为dy/dt=k*x(t)+b,其中dy/dt表示状态变化率,k是增益系数,b可能是偏置。它的响应速度快,直接对输入做出反应。-**二阶系统**:有两个阶跃响应,通常包含一个导数项和一个积分项,如d^2y
- 从小白开始的动态规划
不想编程小谭
算法c++算法动态规划
一、动态规划的核心思想动态规划(DP)通过拆分问题+记忆化计算解决复杂问题,核心步骤为:定义状态:用变量(如dp[i])表示子问题的解状态转移方程:建立子问题之间的关系式初始化:确定基础情况的初始值计算顺序:确定填表方向(自底向上/自顶向下)二、动态规划解题四部曲分析问题是否具有重叠子问题和最优子结构定义明确的状态表示推导状态转移关系处理边界条件并实现三、经典DP问题分类与实战类型1:记忆化递归(
- 【力扣】279.完全平方数
睡不着还睡不醒
leetcodeleetcode算法职场和发展
AC截图题目思路总结动态规划方程得出的思路找到最小子问题,涉及到当前数和上一个数的跨度,以及上一个数的结果如何变成当前数的结果这两个点。1,当前数n和上一个数的跨度:假设n=12,上一个数可以是11,11+1=12,OK;上一个数可以是8,因为8+4=12;上一个数可以是3,因为3+9=12;为什么11、8、3可以?因为题目要求是完全平方数相加。只有11加上1(11),8+4(22),3+9(3*
- 并查集题目
好好学Java吖
javaleetcode算法数据结构
并查集题目聚合一块(蓝桥)合根植物(蓝桥)等式方程的可满足性省份数量并查集(Union-Find)算法是一个专门针对「动态连通性」的算法。双方向的连通。模板:classUF{//连通分量个数privateintcount;//存储每个节点的父节点privateint[]parent;//n为图中节点的个数publicUF(intn){this.count=n;parent=newint[n];fo
- 数学与光学:光的传播和干涉的数学描述
AI天才研究院
计算ChatGPTDeepSeekR1&大数据AI人工智能大模型javapythonjavascriptkotlingolang架构人工智能大厂程序员硅基计算碳基计算认知计算生物计算深度学习神经网络大数据AIGCAGILLM系统架构设计软件哲学Agent程序员实现财富自由
《数学与光学:光的传播和干涉的数学描述》关键词:光学,数学模型,光传播,干涉,波动方程摘要:本文旨在深入探讨光学中光的传播和干涉现象的数学描述。我们将从基础概念出发,逐步引入光的传播路径分析、斯涅尔定律和光的衍射现象,再到干涉原理和数学模型,最后探讨特殊情况下的干涉现象及其应用。文章将结合数学公式和编程实例,提供清晰的逻辑推理和分析过程,以帮助读者更好地理解和掌握这些核心概念。目录大纲《数学与光学
- 有限长序列的z变换收敛域_几类序列的Z变换收敛域.PPT
沈阳无距科技
有限长序列的z变换收敛域
几类序列的Z变换收敛域第七章离散时间系统的Z域分析本章的主要内容z变换定义、典型序列的z变换z变换的收敛域逆z变换z变换的基本性质z变换与拉氏变换的关系利用z变换解差分方程离散系统的系统函数序列的傅里叶变换第一节引言一、Z变换方法的发展历史1730年,英国数学家棣莫弗(DeMoivre1667-1754)将生成函数(generationfunction)的概念引入概率理论中。19世纪拉普拉斯(P.
- 机器学习数学基础:20.方程组解的结构
@心都
机器学习数学基础机器学习人工智能
一、教程简介本教程专门为线性代数零基础的小白打造,旨在全面且细致地讲解解方程组与基础解系的相关知识,助力大家逐步扎实地掌握这一重要内容板块。二、知识目标透彻理解非齐次与齐次线性方程组的定义、本质区别以及对应的解法。熟练掌握判断方程组解的存在性的方法,精准把握秩在其中起到的决定性作用。能够独立且准确地求解齐次线性方程组,并规范地表示出其通解。精通判断一个向量组是否为齐次线性方程组的基础解系的方法,并
- 312个免费高速HTTP代理IP(能隐藏自己真实IP地址)
yangshangchuan
高速免费superwordHTTP代理
124.88.67.20:843
190.36.223.93:8080
117.147.221.38:8123
122.228.92.103:3128
183.247.211.159:8123
124.88.67.35:81
112.18.51.167:8123
218.28.96.39:3128
49.94.160.198:3128
183.20
- pull解析和json编码
百合不是茶
androidpull解析json
n.json文件:
[{name:java,lan:c++,age:17},{name:android,lan:java,age:8}]
pull.xml文件
<?xml version="1.0" encoding="utf-8"?>
<stu>
<name>java
- [能源与矿产]石油与地球生态系统
comsci
能源
按照苏联的科学界的说法,石油并非是远古的生物残骸的演变产物,而是一种可以由某些特殊地质结构和物理条件生产出来的东西,也就是说,石油是可以自增长的....
那么我们做一个猜想: 石油好像是地球的体液,我们地球具有自动产生石油的某种机制,只要我们不过量开采石油,并保护好
- 类与对象浅谈
沐刃青蛟
java基础
类,字面理解,便是同一种事物的总称,比如人类,是对世界上所有人的一个总称。而对象,便是类的具体化,实例化,是一个具体事物,比如张飞这个人,就是人类的一个对象。但要注意的是:张飞这个人是对象,而不是张飞,张飞只是他这个人的名字,是他的属性而已。而一个类中包含了属性和方法这两兄弟,他们分别用来描述对象的行为和性质(感觉应该是
- 新站开始被收录后,我们应该做什么?
IT独行者
PHPseo
新站开始被收录后,我们应该做什么?
百度终于开始收录自己的网站了,作为站长,你是不是觉得那一刻很有成就感呢,同时,你是不是又很茫然,不知道下一步该做什么了?至少我当初就是这样,在这里和大家一份分享一下新站收录后,我们要做哪些工作。
至于如何让百度快速收录自己的网站,可以参考我之前的帖子《新站让百
- oracle 连接碰到的问题
文强chu
oracle
Unable to find a java Virtual Machine--安装64位版Oracle11gR2后无法启动SQLDeveloper的解决方案
作者:草根IT网 来源:未知 人气:813标签:
导读:安装64位版Oracle11gR2后发现启动SQLDeveloper时弹出配置java.exe的路径,找到Oracle自带java.exe后产生的路径“C:\app\用户名\prod
- Swing中按ctrl键同时移动鼠标拖动组件(类中多借口共享同一数据)
小桔子
java继承swing接口监听
都知道java中类只能单继承,但可以实现多个接口,但我发现实现多个接口之后,多个接口却不能共享同一个数据,应用开发中想实现:当用户按着ctrl键时,可以用鼠标点击拖动组件,比如说文本框。
编写一个监听实现KeyListener,NouseListener,MouseMotionListener三个接口,重写方法。定义一个全局变量boolea
- linux常用的命令
aichenglong
linux常用命令
1 startx切换到图形化界面
2 man命令:查看帮助信息
man 需要查看的命令,man命令提供了大量的帮助信息,一般可以分成4个部分
name:对命令的简单说明
synopsis:命令的使用格式说明
description:命令的详细说明信息
options:命令的各项说明
3 date:显示时间
语法:date [OPTION]... [+FORMAT]
- eclipse内存优化
AILIKES
javaeclipsejvmjdk
一 基本说明 在JVM中,总体上分2块内存区,默认空余堆内存小于 40%时,JVM就会增大堆直到-Xmx的最大限制;空余堆内存大于70%时,JVM会减少堆直到-Xms的最小限制。 1)堆内存(Heap memory):堆是运行时数据区域,所有类实例和数组的内存均从此处分配,是Java代码可及的内存,是留给开发人
- 关键字的使用探讨
百合不是茶
关键字
//关键字的使用探讨/*访问关键词private 只能在本类中访问public 只能在本工程中访问protected 只能在包中和子类中访问默认的 只能在包中访问*//*final 类 方法 变量 final 类 不能被继承 final 方法 不能被子类覆盖,但可以继承 final 变量 只能有一次赋值,赋值后不能改变 final 不能用来修饰构造方法*///this()
- JS中定义对象的几种方式
bijian1013
js
1. 基于已有对象扩充其对象和方法(只适合于临时的生成一个对象):
<html>
<head>
<title>基于已有对象扩充其对象和方法(只适合于临时的生成一个对象)</title>
</head>
<script>
var obj = new Object();
- 表驱动法实例
bijian1013
java表驱动法TDD
获得月的天数是典型的直接访问驱动表方式的实例,下面我们来展示一下:
MonthDaysTest.java
package com.study.test;
import org.junit.Assert;
import org.junit.Test;
import com.study.MonthDays;
public class MonthDaysTest {
@T
- LInux启停重启常用服务器的脚本
bit1129
linux
启动,停止和重启常用服务器的Bash脚本,对于每个服务器,需要根据实际的安装路径做相应的修改
#! /bin/bash
Servers=(Apache2, Nginx, Resin, Tomcat, Couchbase, SVN, ActiveMQ, Mongo);
Ops=(Start, Stop, Restart);
currentDir=$(pwd);
echo
- 【HBase六】REST操作HBase
bit1129
hbase
HBase提供了REST风格的服务方便查看HBase集群的信息,以及执行增删改查操作
1. 启动和停止HBase REST 服务 1.1 启动REST服务
前台启动(默认端口号8080)
[hadoop@hadoop bin]$ ./hbase rest start
后台启动
hbase-daemon.sh start rest
启动时指定
- 大话zabbix 3.0设计假设
ronin47
What’s new in Zabbix 2.0?
去年开始使用Zabbix的时候,是1.8.X的版本,今年Zabbix已经跨入了2.0的时代。看了2.0的release notes,和performance相关的有下面几个:
:: Performance improvements::Trigger related da
- http错误码大全
byalias
http协议javaweb
响应码由三位十进制数字组成,它们出现在由HTTP服务器发送的响应的第一行。
响应码分五种类型,由它们的第一位数字表示:
1)1xx:信息,请求收到,继续处理
2)2xx:成功,行为被成功地接受、理解和采纳
3)3xx:重定向,为了完成请求,必须进一步执行的动作
4)4xx:客户端错误,请求包含语法错误或者请求无法实现
5)5xx:服务器错误,服务器不能实现一种明显无效的请求
- J2EE设计模式-Intercepting Filter
bylijinnan
java设计模式数据结构
Intercepting Filter类似于职责链模式
有两种实现
其中一种是Filter之间没有联系,全部Filter都存放在FilterChain中,由FilterChain来有序或无序地把把所有Filter调用一遍。没有用到链表这种数据结构。示例如下:
package com.ljn.filter.custom;
import java.util.ArrayList;
- 修改jboss端口
chicony
jboss
修改jboss端口
%JBOSS_HOME%\server\{服务实例名}\conf\bindingservice.beans\META-INF\bindings-jboss-beans.xml
中找到
<!-- The ports-default bindings are obtained by taking the base bindin
- c++ 用类模版实现数组类
CrazyMizzz
C++
最近c++学到数组类,写了代码将他实现,基本具有vector类的功能
#include<iostream>
#include<string>
#include<cassert>
using namespace std;
template<class T>
class Array
{
public:
//构造函数
- hadoop dfs.datanode.du.reserved 预留空间配置方法
daizj
hadoop预留空间
对于datanode配置预留空间的方法 为:在hdfs-site.xml添加如下配置
<property>
<name>dfs.datanode.du.reserved</name>
<value>10737418240</value>
 
- mysql远程访问的设置
dcj3sjt126com
mysql防火墙
第一步: 激活网络设置 你需要编辑mysql配置文件my.cnf. 通常状况,my.cnf放置于在以下目录: /etc/mysql/my.cnf (Debian linux) /etc/my.cnf (Red Hat Linux/Fedora Linux) /var/db/mysql/my.cnf (FreeBSD) 然后用vi编辑my.cnf,修改内容从以下行: [mysqld] 你所需要: 1
- ios 使用特定的popToViewController返回到相应的Controller
dcj3sjt126com
controller
1、取navigationCtroller中的Controllers
NSArray * ctrlArray = self.navigationController.viewControllers;
2、取出后,执行,
[self.navigationController popToViewController:[ctrlArray objectAtIndex:0] animated:YES
- Linux正则表达式和通配符的区别
eksliang
正则表达式通配符和正则表达式的区别通配符
转载请出自出处:http://eksliang.iteye.com/blog/1976579
首先得明白二者是截然不同的
通配符只能用在shell命令中,用来处理字符串的的匹配。
判断一个命令是否为bash shell(linux 默认的shell)的内置命令
type -t commad
返回结果含义
file 表示为外部命令
alias 表示该
- Ubuntu Mysql Install and CONF
gengzg
Install
http://www.navicat.com.cn/download/navicat-for-mysql
Step1: 下载Navicat ,网址:http://www.navicat.com/en/download/download.html
Step2:进入下载目录,解压压缩包:tar -zxvf navicat11_mysql_en.tar.gz
- 批处理,删除文件bat
huqiji
windowsdos
@echo off
::演示:删除指定路径下指定天数之前(以文件名中包含的日期字符串为准)的文件。
::如果演示结果无误,把del前面的echo去掉,即可实现真正删除。
::本例假设文件名中包含的日期字符串(比如:bak-2009-12-25.log)
rem 指定待删除文件的存放路径
set SrcDir=C:/Test/BatHome
rem 指定天数
set DaysAgo=1
- 跨浏览器兼容的HTML5视频音频播放器
天梯梦
html5
HTML5的video和audio标签是用来在网页中加入视频和音频的标签,在支持html5的浏览器中不需要预先加载Adobe Flash浏览器插件就能轻松快速的播放视频和音频文件。而html5media.js可以在不支持html5的浏览器上使video和audio标签生效。 How to enable <video> and <audio> tags in
- Bundle自定义数据传递
hm4123660
androidSerializable自定义数据传递BundleParcelable
我们都知道Bundle可能过put****()方法添加各种基本类型的数据,Intent也可以通过putExtras(Bundle)将数据添加进去,然后通过startActivity()跳到下一下Activity的时候就把数据也传到下一个Activity了。如传递一个字符串到下一个Activity
把数据放到Intent
- C#:异步编程和线程的使用(.NET 4.5 )
powertoolsteam
.net线程C#异步编程
异步编程和线程处理是并发或并行编程非常重要的功能特征。为了实现异步编程,可使用线程也可以不用。将异步与线程同时讲,将有助于我们更好的理解它们的特征。
本文中涉及关键知识点
1. 异步编程
2. 线程的使用
3. 基于任务的异步模式
4. 并行编程
5. 总结
异步编程
什么是异步操作?异步操作是指某些操作能够独立运行,不依赖主流程或主其他处理流程。通常情况下,C#程序
- spark 查看 job history 日志
Stark_Summer
日志sparkhistoryjob
SPARK_HOME/conf 下:
spark-defaults.conf 增加如下内容
spark.eventLog.enabled true spark.eventLog.dir hdfs://master:8020/var/log/spark spark.eventLog.compress true
spark-env.sh 增加如下内容
export SP
- SSH框架搭建
wangxiukai2015eye
springHibernatestruts
MyEclipse搭建SSH框架 Struts Spring Hibernate
1、new一个web project。
2、右键项目,为项目添加Struts支持。
选择Struts2 Core Libraries -<MyEclipes-Library>
点击Finish。src目录下多了struts