Given any positive integer N, you are supposed to find all of its prime factors, and write them in the format N = p1^k1 * p2^k2 *…*pm^km.
Input Specification:
Each input file contains one test case which gives a positive integer N in the range of long int.
Output Specification:
Factor N in the format N = p1^k1 * p2^k2 *…*pm^km, where pi's are prime factors of N in increasing order, and the exponent ki is the number of pi -- hence when there is only one pi, ki is 1 and must NOT be printed out.
Sample Input:97532468Sample Output:
97532468=2^2*11*17*101*1291
#include<stdio.h> using namespace std; bool flag[100002]; int prime[100002]; int primesize; void init() { primesize = 0; for(int i = 2; i <= 100000; i ++) { if(flag[i]) continue; prime[primesize ++] = i; if(i >= 1000) continue; for(int j = i*i; j <= 100000; j += i) flag[j] = true; } } int main() { init(); int n, m; scanf("%d", &n); m = n; if(m == 1) { printf("1=1\n"); return 0; } int ansPrime[30], ansNum[30]; int ansSize = 0; for(int i = 0; i < primesize; i ++) { if(m % prime[i] == 0) { ansPrime[ansSize] = prime[i]; ansNum[ansSize] = 0; while(m % prime[i] == 0) { ansNum[ansSize] ++; m /= prime[i]; } ansSize ++; if(m == 1) break; } } if(m != 1) { ansPrime[ansSize] = m; ansNum[ansSize] = 1; } printf("%d=", n); for(int i = 0; i < ansSize; i ++) { if(i == ansSize-1) { if(ansNum[i] == 1) printf("%d\n", ansPrime[i]); else printf("%d^%d\n", ansPrime[i], ansNum[i]); } else { if(ansNum[i] == 1) printf("%d*", ansPrime[i]); else printf("%d^%d*", ansPrime[i], ansNum[i]); } } return 0; }