题目链接:uva 1517 - Tracking RFIDs
题目大意:给定S,R,W,P,表示有R个传感器,感应半径为R,W堵墙,P个产品,给定S个传感器的位置,W堵墙的位置(两端点),以及P个产品的位置。输出每个产品可以被那些传感器确定位置。如果传感器和产品之间隔着k堵墙,则距离要加上k。
解题思路:S个数很大,但是R很小,所以枚举每个产品周围坐标加减R的距离范围内的点,判断是否存在传感器,如果存在判断距离是否满足,判断距离的时候要枚举墙的位置,判断两条线段是否相交,利用向量叉积的性质判断即可。
#include <cstdio>
#include <cstring>
#include <set>
#include <vector>
#include <algorithm>
using namespace std;
typedef long long ll;
struct point {
int x, y;
point (int x = 0, int y = 0) {
this->x = x;
this->y = y;
}
point operator + (const point& u) {
return point(x + u.x, y + u.y);
}
point operator - (const point& u) {
return point(x - u.x, y - u.y);
}
int operator ^ (const point& u) {
return x * u.y - y * u.x;
}
bool operator < (const point& u) const {
if (x != u.x)
return x < u.x;
return y < u.y;
}
};
typedef pair<point, point> line;
int S, R, W, P;
set<point> pset;
vector<line> pline;
void init () {
pset.clear();
pline.clear();
scanf("%d%d%d%d", &S, &R, &W, &P);
point u, v;
for (int i = 0; i < S; i++) {
scanf("%d%d", &u.x, &u.y);
pset.insert(u);
}
for (int i = 0; i < W; i++) {
scanf("%d%d%d%d", &u.x, &u.y, &v.x, &v.y);
pline.push_back(make_pair(u, v));
}
}
bool check (point a, point b, point c, point d) {
if (max(a.x, b.x) < min(c.x, d.x) ||
max(a.y, b.y) < min(c.y, d.y) ||
min(a.x, b.x) > max(c.x, d.x) ||
min(a.y, b.y) > max(c.y, d.y) )
return false;
ll i = (b - a) ^ (b - c);
ll j = (b - a) ^ (b - d);
ll p = (d - c) ^ (d - a);
ll q = (d - c) ^ (d - b);
return i * j <= 0 && p * q <= 0;
}
bool judge (point u, int x, int y) {
if (x * x + y * y > R * R)
return false;
point v = u + point(x, y);
if (!pset.count(v))
return false;
int cnt = 0;
for (int i = 0; i < W; i++) {
if (check(u, v, pline[i].first, pline[i].second))
cnt++;
}
if (cnt > R)
return false;
return x * x + y * y <= (R - cnt) * (R - cnt);
}
void solve () {
point u;
vector<point> ans;
for (int i = 0; i < P; i++) {
ans.clear();
scanf("%d%d", &u.x, &u.y);
for (int x = -R; x <= R; x++) {
for (int y = -R; y <= R; y++) {
if (judge(u, x, y))
ans.push_back(u + point(x, y));
}
}
sort(ans.begin(), ans.end());
printf("%lu", ans.size());
for (int i = 0; i < ans.size(); i++)
printf(" (%d,%d)", ans[i].x, ans[i].y);
printf("\n");
}
}
int main () {
int cas;
scanf("%d", &cas);
while (cas--) {
init();
solve();
}
return 0;
}