新学hadoop,测试了hello word级别的程序WordCount,打算用hadoop做聚类分析,这次测试KMeans,二维的数据,具体代码来自于http://download.csdn.net/detail/tinycui/4384750#comment,由于评论中大家对于文档偏少,所以这里详细的介绍一下我的测试过程(伪分布式),以供参考,同时感谢tinycui提供的源代码下载。
Step1: 配置好eclipse和hadoop,具体可以参考网上一些操作。
Step2: 新建一个Project --> Map/Reduce Project工程,命名为KMeans,这里记得要选择Map/Reduce Project工程,否则把代码加进来会出现import错误
Step3: 用tinycui提供的网址下载KMeans的源代码,把src和bin文件覆盖到自己新建的工程中,并在eclipse中刷新KMeans工程
Step4: 在DFS中新建两个文件夹center, cluster, 并在center文件夹中上传一个空的文件center以存放每次迭代的center值,在cluter文件夹中上传cluster的文件,这个文件中是输入数据,数据格式为:(20,30) (50,61) (20,32) (50,64) (59,67) (24,34) (19,39) (20,32) (50,65) (50,77) (20,30) (20,31) (20,32) (50,64) (50,67)
Step5: 配置main的输入参数,Run --> Run Configurations中的Arguments中配置main的三个参数:输入路径,存放KMeans的中心的路径,输出路径,中间空格隔开。
分别为
hdfs://192.168.56.171:9000/cluster
hdfs://192.168.56.171:9000/center
hdfs://192.168.56.171:9000/ouput
这里的IP可以填写自己的IP地址或者localhost
Step6: 修改部分配置代码,具体代码可以参考如下:
主程序KMeans.java
import org.apache.hadoop.conf.Configuration; import org.apache.hadoop.fs.FileSystem; import org.apache.hadoop.fs.Path; import org.apache.hadoop.io.Text; import org.apache.hadoop.mapreduce.Job; import org.apache.hadoop.mapreduce.lib.input.FileInputFormat; import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat; public class KMeans { public static void main(String[] args) throws Exception { CenterInitial centerInitial = new CenterInitial(); centerInitial.run(args); int times=0; double s = 0,shold = 0.0001; do { Configuration conf = new Configuration(); conf.set("fs.default.name", "hdfs://192.168.56.171:9000"); Job job = new Job(conf,"KMeans"); job.setJarByClass(KMeans.class); job.setOutputKeyClass(Text.class); job.setOutputValueClass(Text.class); job.setMapperClass(KMapper.class); job.setMapOutputKeyClass(Text.class); job.setMapOutputValueClass(Text.class); job.setReducerClass(KReducer.class); FileSystem fs = FileSystem.get(conf); fs.delete(new Path(args[2]),true); FileInputFormat.addInputPath(job, new Path(args[0])); FileOutputFormat.setOutputPath(job, new Path(args[2])); job.waitForCompletion(true); if(job.waitForCompletion(true)) { NewCenter newCenter = new NewCenter(); s = newCenter.run(args); times++; } } while(s > shold); System.out.println("Iterator: " + times); } }
import java.io.ByteArrayInputStream; import java.io.ByteArrayOutputStream; import java.io.IOException; import java.io.OutputStream; import java.net.URI; import org.apache.hadoop.conf.Configuration; import org.apache.hadoop.fs.FSDataInputStream; import org.apache.hadoop.fs.FileSystem; import org.apache.hadoop.fs.Path; import org.apache.hadoop.io.IOUtils; public class CenterInitial { public void run(String[] args) throws IOException { String[] clist; int k = 5; String string = ""; String inpath = args[0]+"/cluster"; //cluster String outpath = args[1]+"/center"; //center Configuration conf1 = new Configuration(); //读取hadoop文件系统的配置 conf1.set("hadoop.job.ugi", "hadoop,hadoop"); FileSystem fs = FileSystem.get(URI.create(inpath),conf1); //FileSystem是用户操作HDFS的核心类,它获得URI对应的HDFS文件系统 FSDataInputStream in = null; ByteArrayOutputStream out = new ByteArrayOutputStream(); try{ in = fs.open( new Path(inpath) ); IOUtils.copyBytes(in,out,50,false); //用Hadoop的IOUtils工具方法来让这个文件的指定字节复制到标准输出流上 clist = out.toString().split(" "); } finally { IOUtils.closeStream(in); } FileSystem filesystem = FileSystem.get(URI.create(outpath), conf1); for(int i=0;i<k;i++) { int j=(int) (Math.random()*100) % clist.length; if(string.contains(clist[j])) // choose the same one { k++; continue; } string = string + clist[j].replace(" ", "") + " "; } OutputStream out2 = filesystem.create(new Path(outpath) ); IOUtils.copyBytes(new ByteArrayInputStream(string.getBytes()), out2, 4096,true); //write string System.out.println(string); } }
import java.io.ByteArrayOutputStream; import java.io.IOException; import java.net.URI; import java.util.StringTokenizer; import org.apache.hadoop.conf.Configuration; import org.apache.hadoop.fs.FSDataInputStream; import org.apache.hadoop.fs.FileSystem; import org.apache.hadoop.fs.Path; import org.apache.hadoop.io.IOUtils; import org.apache.hadoop.io.LongWritable; import org.apache.hadoop.io.Text; import org.apache.hadoop.mapreduce.Mapper; public class KMapper extends Mapper<LongWritable, Text, Text, Text> { private String[] center; protected void setup(Context context) throws IOException,InterruptedException //read centerlist, and save to center[] { String centerlist = "hdfs://192.168.56.171:9000/center/center"; //center文件 Configuration conf1 = new Configuration(); conf1.set("hadoop.job.ugi", "hadoop-user,hadoop-user"); FileSystem fs = FileSystem.get(URI.create(centerlist),conf1); FSDataInputStream in = null; ByteArrayOutputStream out = new ByteArrayOutputStream(); try{ in = fs.open( new Path(centerlist) ); IOUtils.copyBytes(in,out,100,false); center = out.toString().split(" "); }finally{ IOUtils.closeStream(in); } } public void map(LongWritable key,Text value,Context context) throws IOException,InterruptedException { StringTokenizer itr = new StringTokenizer(value.toString()); while(itr.hasMoreTokens()) { String outValue = new String(itr.nextToken()); String[] list = outValue.replace("(", "").replace(")", "").split(","); String[] c = center[0].replace("(", "").replace(")", "").split(","); float min = 0; int pos = 0; for(int i=0;i<list.length;i++) { min += (float) Math.pow((Float.parseFloat(list[i]) - Float.parseFloat(c[i])),2); } for(int i=0;i<center.length;i++) { String[] centerStrings = center[i].replace("(", "").replace(")", "").split(","); float distance = 0; for(int j=0;j<list.length;j++) distance += (float) Math.pow((Float.parseFloat(list[j]) - Float.parseFloat(centerStrings[j])),2); if(min>distance) { min=distance; pos=i; } } context.write(new Text(center[pos]), new Text(outValue)); } } }
import java.io.IOException; import org.apache.hadoop.io.Text; import org.apache.hadoop.mapreduce.Reducer; public class KReducer extends Reducer<Text, Text, Text, Text> { public void reduce(Text key,Iterable<Text> value,Context context) throws IOException,InterruptedException { String outVal = ""; int count=0; String center=""; int length = key.toString().replace("(", "").replace(")", "").replace(":", "").split(",").length; float[] ave = new float[Float.SIZE*length]; for(int i=0;i<length;i++) ave[i]=0; for(Text val:value) { outVal += val.toString()+" "; String[] tmp = val.toString().replace("(", "").replace(")", "").split(","); for(int i=0;i<tmp.length;i++) ave[i] += Float.parseFloat(tmp[i]); count ++; } for(int i=0;i<length;i++) { ave[i]=ave[i]/count; if(i==0) center += "("+ave[i]+","; else { if(i==length-1) center += ave[i]+")"; else { center += ave[i]+","; } } } System.out.println(center); context.write(key, new Text(outVal+center)); } }
import java.io.ByteArrayInputStream; import java.io.ByteArrayOutputStream; import java.io.IOException; import java.io.OutputStream; import java.net.URI; import org.apache.hadoop.conf.Configuration; import org.apache.hadoop.fs.FSDataInputStream; import org.apache.hadoop.fs.FileSystem; import org.apache.hadoop.fs.Path; import org.apache.hadoop.io.IOUtils; public class NewCenter { int k = 3; float shold=Integer.MIN_VALUE; String[] line; String newcenter = new String(""); public float run(String[] args) throws IOException,InterruptedException { Configuration conf = new Configuration(); conf.set("hadoop.job.ugi", "hadoop,hadoop"); FileSystem fs = FileSystem.get(URI.create(args[2]+"/part-r-00000"),conf); FSDataInputStream in = null; ByteArrayOutputStream out = new ByteArrayOutputStream(); try{ in = fs.open( new Path(args[2]+"/part-r-00000")); IOUtils.copyBytes(in,out,50,false); line = out.toString().split("\n"); } finally { IOUtils.closeStream(in); } System.out.println(out.toString()); for(int i=0;i<k;i++) { String[] l = line[i].replace("\t", " ").split(" "); String[] startCenter = l[0].replace("(", "").replace(")", "").split(","); String[] finalCenter = l[l.length-1].replace("(", "").replace(")", "").split(","); float tmp = 0; for(int j=0;j<startCenter.length;j++) tmp += Math.pow(Float.parseFloat(startCenter[j])-Float.parseFloat(finalCenter[j]), 2); newcenter = newcenter + l[l.length - 1].replace("\t", "") + " "; if(shold <= tmp) shold = tmp; } OutputStream out2 = fs.create(new Path(args[1]+"/center") ); IOUtils.copyBytes(new ByteArrayInputStream(newcenter.getBytes()), out2, 4096,true); System.out.println(newcenter); return shold; } }
输出:
13/05/24 11:20:29 INFO mapred.Task: Task:attempt_local_0004_r_000000_0 is done. And is in the process of commiting 13/05/24 11:20:29 INFO mapred.LocalJobRunner: 13/05/24 11:20:29 INFO mapred.Task: Task attempt_local_0004_r_000000_0 is allowed to commit now 13/05/24 11:20:29 INFO output.FileOutputCommitter: Saved output of task 'attempt_local_0004_r_000000_0' to hdfs://192.168.56.171:9000/ouput 13/05/24 11:20:30 INFO mapred.JobClient: map 100% reduce 0% 13/05/24 11:20:32 INFO mapred.LocalJobRunner: reduce > reduce 13/05/24 11:20:32 INFO mapred.Task: Task 'attempt_local_0004_r_000000_0' done. 13/05/24 11:20:33 INFO mapred.JobClient: map 100% reduce 100% 13/05/24 11:20:33 INFO mapred.JobClient: Job complete: job_local_0004 13/05/24 11:20:33 INFO mapred.JobClient: Counters: 22 13/05/24 11:20:33 INFO mapred.JobClient: File Output Format Counters 13/05/24 11:20:33 INFO mapred.JobClient: Bytes Written=230 13/05/24 11:20:33 INFO mapred.JobClient: FileSystemCounters 13/05/24 11:20:33 INFO mapred.JobClient: FILE_BYTES_READ=3843 13/05/24 11:20:33 INFO mapred.JobClient: HDFS_BYTES_READ=2896 13/05/24 11:20:33 INFO mapred.JobClient: FILE_BYTES_WRITTEN=326968 13/05/24 11:20:33 INFO mapred.JobClient: HDFS_BYTES_WRITTEN=1916 13/05/24 11:20:33 INFO mapred.JobClient: File Input Format Counters 13/05/24 11:20:33 INFO mapred.JobClient: Bytes Read=121 13/05/24 11:20:33 INFO mapred.JobClient: Map-Reduce Framework 13/05/24 11:20:33 INFO mapred.JobClient: Map output materialized bytes=469 13/05/24 11:20:33 INFO mapred.JobClient: Map input records=1 13/05/24 11:20:33 INFO mapred.JobClient: Reduce shuffle bytes=0 13/05/24 11:20:33 INFO mapred.JobClient: Spilled Records=30 13/05/24 11:20:33 INFO mapred.JobClient: Map output bytes=433 13/05/24 11:20:33 INFO mapred.JobClient: Total committed heap usage (bytes)=352845824 13/05/24 11:20:33 INFO mapred.JobClient: CPU time spent (ms)=0 13/05/24 11:20:33 INFO mapred.JobClient: SPLIT_RAW_BYTES=107 13/05/24 11:20:33 INFO mapred.JobClient: Combine input records=0 13/05/24 11:20:33 INFO mapred.JobClient: Reduce input records=15 13/05/24 11:20:33 INFO mapred.JobClient: Reduce input groups=3 13/05/24 11:20:33 INFO mapred.JobClient: Combine output records=0 13/05/24 11:20:33 INFO mapred.JobClient: Physical memory (bytes) snapshot=0 13/05/24 11:20:33 INFO mapred.JobClient: Reduce output records=3 13/05/24 11:20:33 INFO mapred.JobClient: Virtual memory (bytes) snapshot=0 13/05/24 11:20:33 INFO mapred.JobClient: Map output records=15 13/05/24 11:20:33 INFO mapred.JobClient: Running job: job_local_0004 13/05/24 11:20:33 INFO mapred.JobClient: Job complete: job_local_0004 13/05/24 11:20:33 INFO mapred.JobClient: Counters: 22 13/05/24 11:20:33 INFO mapred.JobClient: File Output Format Counters 13/05/24 11:20:33 INFO mapred.JobClient: Bytes Written=230 13/05/24 11:20:33 INFO mapred.JobClient: FileSystemCounters 13/05/24 11:20:33 INFO mapred.JobClient: FILE_BYTES_READ=3843 13/05/24 11:20:33 INFO mapred.JobClient: HDFS_BYTES_READ=2896 13/05/24 11:20:33 INFO mapred.JobClient: FILE_BYTES_WRITTEN=326968 13/05/24 11:20:33 INFO mapred.JobClient: HDFS_BYTES_WRITTEN=1916 13/05/24 11:20:33 INFO mapred.JobClient: File Input Format Counters 13/05/24 11:20:33 INFO mapred.JobClient: Bytes Read=121 13/05/24 11:20:33 INFO mapred.JobClient: Map-Reduce Framework 13/05/24 11:20:33 INFO mapred.JobClient: Map output materialized bytes=469 13/05/24 11:20:33 INFO mapred.JobClient: Map input records=1 13/05/24 11:20:33 INFO mapred.JobClient: Reduce shuffle bytes=0 13/05/24 11:20:33 INFO mapred.JobClient: Spilled Records=30 13/05/24 11:20:33 INFO mapred.JobClient: Map output bytes=433 13/05/24 11:20:33 INFO mapred.JobClient: Total committed heap usage (bytes)=352845824 13/05/24 11:20:33 INFO mapred.JobClient: CPU time spent (ms)=0 13/05/24 11:20:33 INFO mapred.JobClient: SPLIT_RAW_BYTES=107 13/05/24 11:20:33 INFO mapred.JobClient: Combine input records=0 13/05/24 11:20:33 INFO mapred.JobClient: Reduce input records=15 13/05/24 11:20:33 INFO mapred.JobClient: Reduce input groups=3 13/05/24 11:20:33 INFO mapred.JobClient: Combine output records=0 13/05/24 11:20:33 INFO mapred.JobClient: Physical memory (bytes) snapshot=0 13/05/24 11:20:33 INFO mapred.JobClient: Reduce output records=3 13/05/24 11:20:33 INFO mapred.JobClient: Virtual memory (bytes) snapshot=0 13/05/24 11:20:33 INFO mapred.JobClient: Map output records=15 (19.0,39.0) (19,39) (19.0,39.0) (20.571428,31.571428) (20,30) (20,32) (24,34) (20,32) (20,30) (20,31) (20,32) (20.571428,31.571428) (51.285713,66.42857) (50,65) (50,77) (50,64) (59,67) (50,67) (50,61) (50,64) (51.285713,66.42857) (19.0,39.0) (20.571428,31.571428) (51.285713,66.42857) Iterator: 4