题意:c( n, m)%M M = P1 * P2 * ......* Pk
Lucas定理是用来求 c(n,m) mod p,p为素数的值。得出一个存余数数组,在结合中国剩余定理求值
其中有个地方乘积可能超范围,所以按位乘(数论方面薄弱啊,学习学习)。
#include <iostream> #include <cstdio> #include <cstring> #include <vector> #include <queue> using namespace std; typedef long long ll; ll p[15],an[15]; ll fac[100005],inv[100005]; ll pow_mod(ll a, int n, int mod) { ll ret = 1; while (n) { if (n&1) ret = ret * a % mod; a = a * a % mod; n >>= 1; } return ret; } void ini(int x) { fac[0] = 1; for(int i = 1; i < x; i++) fac[i] = fac[i-1]*i%x; inv[x - 1] = pow_mod(fac[x-1],x-2,x); for(int i = x - 2; i >= 0; i--) inv[i] = inv[i+1] * (i+1) % x; } ll c(ll a,ll b,ll p) { if(a < b || a < 0 || b < 0) return 0; return fac[a]*inv[b]%p*inv[a-b]%p; } ll lucas(ll a,ll b, int p) { if( b == 0) return 1; return lucas(a/p,b/p,p)*c(a%p,b%p,p)%p; } ll ex_gcd(ll a, ll b, ll& x, ll& y) { if (b == 0) { x = 1; y = 0; return a; } ll d = ex_gcd(b, a % b, y, x); y -= x * (a / b); return d; } ll mul(ll a, ll b, ll mod) { a = (a % mod + mod) % mod; b = (b % mod + mod) % mod; ll ret = 0; while(b) { if(b&1) { ret += a; if(ret >= mod) ret -= mod; } b >>= 1; a <<= 1; if(a >= mod) a -= mod; } return ret; } ll china(ll n,ll* a,ll* b) { ll M = 1,d,y,x= 0; for(int i = 0; i < n; i++) { M *= b[i]; } for(int i = 0; i < n; i++) { ll w = M/b[i]; ex_gcd(b[i],w,d,y); x = (x + mul(mul(y, w, M), a[i], M));//可能超范围 } return (x+M) % M; } int main() { int T,k; ll n,m; scanf("%d",&T); while(T--) { scanf("%I64d%I64d",&n,&m); scanf("%d",&k); for(int i = 0; i < k; i++) { scanf("%I64d",&p[i]); ini(p[i]); an[i] = lucas(n,m,p[i]); } printf("%I64d\n",china(k,an,p)); } return 0; }