hdu 5667 Sequence(BC——矩阵快速幂)

题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5667

Sequence

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)
Total Submission(s): 1230    Accepted Submission(s): 395


Problem Description
     Holion August will eat every thing he has found.

     Now there are many foods,but he does not want to eat all of them at once,so he find a sequence.

fn=1,ab,abfcn1fn2,n=1n=2otherwise

     He gives you 5 numbers n,a,b,c,p,and he will eat  fn  foods.But there are only p foods,so you should tell him  fn  mod p.
 

Input
     The first line has a number,T,means testcase.

     Each testcase has 5 numbers,including n,a,b,c,p in a line.

    1T10,1n1018,1a,b,c109 , p  is a prime number,and  p109+7 .
 

Output
     Output one number for each case,which is  fn  mod p.
 

Sample Input
   
   
   
   
1 5 3 3 3 233
 

Sample Output
   
   
   
   
190
 

Source
BestCoder Round #80


题目大意Lcomyn 是个很厉害的选手,除了喜欢写17kb+的代码题,偶尔还会写数学题.他找到了一个数列:
f_n=\left\{\begin{matrix} 1 ,&n=1 \\ a^b,&n=2 \\ a^bf_{n-1}^cf_{n-2},&otherwise \end{matrix}\right.fn=1,ab,abfn1cfn2,n=1n=2otherwise

\ \ \ \    他给了你几个数:nn,aa,bb,cc,你需要告诉他f_nfnpp后的数值.
解题思路:
观察递推式我们可以发现,所有的fi都是a的幂次,所以我们先只对指数进行处理,我们会得到一个递推公式 x n =b+x n-1 *c+x n-2 ;
由于数据量很大,所以我们转换成两个矩阵的乘法问题。
A矩阵:b 0 b
B矩阵:c 1 0
        1  0 0
        1  0 1
A*B两个矩阵相乘就可以实现2我们得到的递推公式。这样指数就处理完成了,最后在直接求a的矩阵的最左上角C.a[0][0]次幂即为最终结果。
详见代码。
#include <iostream>
#include <cstdio>

using namespace std;

#define LL long long

LL n,a,b,c,p;
struct node
{
    LL a[3][3];
} A,B;

node cheng(node A,node B)
{
    node C= {0,0,0,0,0,0,0,0,0};
    for (int i=0; i<3; i++) //A的行
    {
        for (int j=0; j<3; j++) //B的列
        {
            for (int k=0; k<3; k++)
                C.a[i][j]=(C.a[i][j]+A.a[i][k]*B.a[k][j])%(p-1);
        }
    }
    return C;
}

node pow(node B,LL t)//矩阵快速幂
{
    node s= {1,0,0,0,1,0,0,0,1};
    while (t)
    {
        if (t%2==1)
            s=cheng(s,B);
        B=cheng(B,B);
        t/=2;
    }
    return s;
}

LL mul(node A,node B)//求最后结果的指数
{
    LL anx=A.a[0][0]*B.a[0][0]+A.a[0][1]*B.a[1][0]+A.a[0][2]*B.a[2][0];
    return anx;
}

LL pow1(LL a,LL anx)
{
    LL s=1;
    while (anx)
    {
        if (anx%2==1)
            s=(s*a)%p;
        a=(a*a)%p;
        anx/=2;
    }
    return s;
}



int main()
{
    int T;
    LL anx,ans;//anx表示最终结果的指数,ans表示最终所求的结果
    scanf("%d",&T);
    while (T--)
    {
        cin>>n>>a>>b>>c>>p;
        if (n==1)
        {
            printf ("1\n");
            continue;
        }
        A.a[0][0]=b,A.a[0][1]=0,A.a[0][2]=b;//xn-1,xn-2,b
        B.a[0][0]=c,B.a[0][1]=1,B.a[0][2]=0;
        B.a[1][0]=1,B.a[1][1]=0,B.a[1][2]=0;
        B.a[2][0]=1,B.a[2][1]=0,B.a[2][2]=1;
        B=pow(B,n-2);
        anx=mul(A,B);
        ans=pow1(a,anx);
        printf ("%lld\n",ans);
    }
    return 0;
}




你可能感兴趣的:(hdu 5667 Sequence(BC——矩阵快速幂))