- AI浪潮下的数据保卫战:SSL证书为何成为企业刚需?
ssl证书
随着人工智能(AI)技术的迅猛发展,数据已成为企业最核心的资产之一。无论是训练AI模型、优化算法,还是提供个性化服务,数据的安全性和隐私保护都至关重要。然而,AI的广泛应用也带来了前所未有的安全挑战,尤其是在数据传输和存储过程中,如何防止数据泄露、篡改和窃取成为企业必须面对的问题。在这样的背景下,SSL证书作为网络安全的基础设施,正逐渐成为企业的“刚需”。1.AI时代的数据安全挑战数据量激增:AI
- 代码托管平台深度解析:Gitee如何赋能本土开发团队
在数字化进程加速的今天,代码托管平台不仅是技术协作的工具,更是团队效率与安全的核心保障。Gitee作为国内技术生态的标杆产品,凭借其本地化适配能力与全流程工具链,成为开发者的强力后盾。本文从实际场景出发,剖析Gitee如何助力团队突破开发瓶颈。一、本地化体验:消除开发环境壁垒Gitee扎根国内开发者生态,从网络基础设施到用户界面均针对本土需求优化:高速访问:国内服务器集群确保代码拉取、提交响应毫秒
- 如何在androidstudio开发环境中查看sqlite数据库(按新版本Android Studio Giraffe提供详细步骤和操作说明,附截图,代码)鹿溪IT工作室提供
LuXi_foryou
Androidstudio的常见教程数据库sqliteandroidstudio
在AndroidStudio中查看SQLite数据库是开发过程中非常常见的需求。以下是详细步骤,适用于新版本的AndroidStudio(如AndroidStudioGiraffe或更高版本)。步骤1:确保使用Room或SQLiteOpenHelper在Android开发中,通常使用以下两种方式操作SQLite数据库:SQLiteOpenHelper:传统方式,手动管理数据库。Room:Googl
- 7 款热门项目管理工具深度剖析:Gitee 的卓越优势与多元选择
在当今竞争激烈的商业环境中,高效的项目管理是团队成功的关键。合适的项目管理工具能显著提升协作效率、优化资源分配并确保项目按时交付。本文将为您详细介绍7款主流项目管理工具,着重推荐功能强大的Gitee,帮助您根据团队需求做出最佳选择。一、Gitee(码云)——本土创新的项目管理先锋适用场景:软件开发全流程、开源项目协作、企业数字化转型核心优势:极致本地化体验服务器位于国内,代码操作响应速度极快,彻底
- 大语言模型引擎全解析:Transformers、vLLM、Llama.cpp等,最佳选择全攻略!
大模型入门教程
语言模型llama人工智能DeepSeekpromptAI大模型大模型
近年来,大语言模型(LLMs)如GPT、LLaMA、BERT等已经成为人工智能领域的核心驱动力。然而,如何高效地运行和优化这些模型,成为了开发者和研究者面临的重要挑战。为此,一系列专为大语言模型设计的引擎应运而生。本文将带你深入了解Transformers、vLLM、Llama.cpp、SGLang、MLX和Ollama这些引擎,帮助你找到最适合的工具,释放大语言模型的全部潜力!作为技术人员,不仅
- 一个实例用全创建型模式-优化(冗余消除)
科学的发展-只不过是读大自然写的代码
java算法前端
1.关联链接上一篇:一个实例用全创建型模式-CSDN博客目录:《一个实例讲完23种设计模式》2.内容当前:单件+抽象工厂+创建者+工厂方法+优化需求:坦克大战创建两种坦克坦克类型射程速度b7070米时/70公里b5050米时/50公里设计说明1.抽象工厂承担了创建部件的任务2.创建者承担了讲部件组装的任务3.工厂方法类相当于创建者模式的导演,但是他是并未给用户提供选择创建者的接口。而是通过自己的多
- k-Shape:高效准确的聚类方法
优化算法侠Swarm-Opti
信号处理故障诊断聚类机器学习人工智能matlab数据挖掘
引言时间数据在许多学科中的扩散和无处不在,已经对时间序列的分析和挖掘产生了极大的兴趣。聚类是最流行的数据挖掘方法之一,不仅因为它的探索性,而且作为其他技术的预处理步骤或子程序。常用的有-means聚类算法。本文介绍了一种新的时间序列聚类算法k-Shape。k-Shape依赖于一个可扩展的迭代优化过程,它创建同质和良好分离的集群。作为距离度量,k-Shape使用标准化的交叉相关。基于距离度量的性质,
- 基于BMO磁性细菌优化的WSN网络最优节点部署算法matlab仿真
软件算法开发
MATLAB程序开发#网络仿真matlabBMO磁性细菌优化WSN网络最优节点部署
目录1.程序功能描述2.测试软件版本以及运行结果展示3.核心程序4.本算法原理5.完整程序1.程序功能描述无线传感器网络(WirelessSensorNetwork,WSN)由大量分布式传感器节点组成,用于监测物理或环境状况。节点部署是WSN的关键问题,合理的部署可以提高网络的覆盖范围、连通性和能量效率。磁性细菌是一类能够感知地球磁场并沿磁场方向游动的微生物。在BMO算法中,模拟磁性细菌的这种趋磁
- SQL Server 性能优化最佳实践
Morris只会敲命令
性能优化
引言在数据驱动的业务场景中,SQLServer作为企业级关系型数据库的核心,其性能直接影响业务系统的吞吐量和响应速度。无论是应对高并发交易、复杂分析查询,还是处理海量数据写入,性能瓶颈往往隐藏在索引设计、查询逻辑、锁竞争或资源配置中。本文将深入剖析SQLServer性能优化的关键技术,从诊断工具使用到实战调优策略,提供一套完整的优化闭环方案。一、性能分析:定位瓶颈的科学方法1.1内置监控工具实战1
- 代码托管平台的选择:Gitee的本土化优势与高效开发实践
kuaile0906
gitee源代码管理团队开发devopsci/cd开源
1、Gitee(码云)作为国内领先的代码托管平台,2、其本土化服务与高效协作能力备受开发者青睐,3、功能完备性助力团队实现敏捷开发。Gitee凭借稳定的服务架构与符合国内用户习惯的设计,在代码托管领域占据重要地位。其不仅提供基础的代码管理功能,还集成了CI/CD、项目管理、文档协作等工具,有效降低多平台切换成本,提升开发效率。简洁的中文界面与本地化技术支持,进一步优化了用户体验,尤其适合国内开发团
- 多宠识别:基于计算机视觉的智能宠物管理系统架构解析
深圳市快瞳科技有限公司
计算机视觉宠物系统架构
一、行业痛点与技术方案演进在多宠家庭场景中,传统方案面临三大技术瓶颈:1.生物特征混淆:同品种/毛色宠物识别准确率低于65%2.动态场景适应:进食/奔跑状态下的误检率达30%+3.数据孤岛问题:离线设备无法实现持续学习优化快瞳科技采用**双模态视觉融合架构**,结合轻量化YOLOv7-Tiny模型与CLIP多模态大模型,实现:-98.7%的跨品种宠物识别准确率(CVPR2024最新测试数据)-单次
- Claude更新王炸功能:一键生成、评估、优化提示词!
AI信息Gap
人工智能chatgptgptaiOpenAI
要想挖掘一座金矿,你得先学会使用铲子。类似地,要想让LLM模型或生成式AI工具更好的为你服务,你得先学会“写提示词”。提示词就是敲开AI大门的那把钥匙,相同的任务目标,不同的提示词得到的结果可能截然不同。好的提示词是高质量输出内容的前提条件。关于提示词的教程,我已经写了很多,感兴趣的小伙伴可以在文末按需学习。当前生成式AI最强大的能力是什么?生成。既然是这样,那么为什么不让AI自己根据我们的任务需
- 【DuodooTEKr】Odoo 18设备管理双剑客:Maintenance设备模块与IOT模块的深度解析与实践
邹工转型手札
Duodoo开源Odoo18开源风吟九宵人工智能物联网制造开源python
作者:Odoo技术开发/资深信息化负责人日期:2025年3月9日作为拥有16年制造业信息化实战经验的从业者,我见证过企业从传统设备管理向数字化转型的全过程。在Odoo生态中,设备模块(Maintenance)与IOT模块(InternetofThings)堪称制造业数字化的"任督二脉"。本文将通过三组对比、四维差异、六大场景带您掌握这两个核心模块的应用精髓。一、模块定位的"一体两面"(1)设备模块
- 使用Java进行加密狗相关程序优化
加密狗定制分析赋值
运维数据库服务器人工智能pygame
个人心得1.加密狗通信优化-减少不必要的交互-分析加密狗操作流程,去除冗余的读取或写入操作。例如,如果在初始化阶段已经获取了某些配置信息且在后续流程中不会改变,就不需要重复读取。-批量处理加密狗相关的操作。如果需要对加密狗进行多次数据写入或读取,尝试将这些操作合并为一次批量操作(如果加密狗驱动和API支持)。-优化通信协议-深入了解加密狗与Java程序之间的通信协议。如果协议允许,采用更高效的编码
- 面试必备:Kafka高频面试题及答案解析
江-小北
面试kafka职场和发展
本文,已收录于,我的技术网站aijiangsir.com,有大厂完整面经,工作技术,架构师成长之路,等经验分享Kafka中的ProducerAPI是如何工作的?Kafka中的ProducerAPI允许应用程序发布一流的数据到一个或多个Kafka主题。它的工作原理包括:1、创建Producer实例:通过配置Producer的各种属性(如服务器地址、序列化方式等)来创建Producer实例。2、发送消
- AI 大模型应用数据中心建设:数据中心成本优化
杭州大厂Java程序媛
DeepSeekR1&AI人工智能与大数据javapythonjavascriptkotlingolang架构人工智能
AI大模型应用数据中心建设:数据中心成本优化1.背景介绍在人工智能(AI)和大模型应用的快速发展中,数据中心(DataCenter)成为了一个至关重要的组成部分。无论是进行深度学习模型的训练,还是大模型应用的推理,数据中心都需要提供充足的计算资源、存储空间和网络带宽。随着AI模型和大数据量的增长,数据中心的建设和管理成本逐渐成为AI技术落地和应用的核心挑战之一。为了优化数据中心成本,同时保持高性能
- Python计算机二级编程题真题及考点总结【纯干货】
python二级小助手
全国python二级考试python开发语言pip笔记经验分享
Python计算机二级编程题真题及考点总结【纯干货】一、前言相较于各类Python基础教程和二级经验分享类文章,个人认为如果只是想要考取计算机二级证书的话,最快且有效的方法应是在明晰考纲的前提下有针对性的进行学习,达到以最短时间考取证书的目的。因此除真题外,本篇重点在于总结Python二级考试中的编程题(占60分)的考查内容及知识点总结,让Python小白能在一周内掌握绝大多数编程题的解题方法,顺
- 物联网中如何解决网络复杂性的问题
小赖同学啊
智能硬件物联网网络
物联网(IoT)中的网络复杂性问题是物联网系统设计和运维中的一大挑战。网络复杂性可能源于多种因素,包括设备数量庞大、通信协议多样、网络拓扑复杂、数据流量巨大、安全性和隐私保护需求高等。解决网络复杂性问题是确保物联网系统高效、可靠和安全运行的关键。以下是一些解决物联网网络复杂性问题的策略和方法:1.网络架构优化1.1分层架构采用分层的网络架构可以简化网络设计和管理。常见的分层架构包括:感知层:负责数
- Process-based Self-Rewarding Language Models 论文简介
ZHOU_CAMP
deepseekrelated论文人工智能深度学习
基于过程的自奖励语言模型:LLM优化的新范式引言大型语言模型(LLM)在多种任务中展现出了强大的能力,尤其是在使用人工标注的偏好数据进行训练时。然而,传统的自奖励范式在数学推理任务中存在局限性,甚至可能在迭代训练中导致模型性能下降。为了解决这些问题,论文《Process-basedSelf-RewardingLanguageModels》提出了一种新的框架,该框架结合了长链推理、逐步LLM评判(L
- Vue中Scoped的原理及深度解析
喜欢代码的新之助
vue.js前端javascript
Vue中Scoped的原理及深度解析前言回想起几年前初入职场时,面对面试官的提问“Vue中Scoped的原理是什么?”时,我的回答虽然勉强过关,但内心却充满了不确定。那时,我对知识的理解还停留在表面,只能依靠死记硬背。如今,经过几年的开发经验积累,再次审视这个问题,我有了更深入的理解。CSS常见模块化方案在前端开发中,CSS模块化是一个重要的话题。常见的CSS模块化方案包括:BEM方案:通过.bl
- 实战1. 利用Pytorch解决 CIFAR 数据集中的图像分类为 10 类的问题
啥都鼓捣的小yao
深度学习pytorch分类人工智能深度学习
实战1.利用Pytorch解决CIFAR数据集中的图像分类为10类的问题加载数据建立模型模型训练测试评估你的任务是建立一个用于CIFAR图像分类的神经网络,并实现分类质量>0.5。注意:因为我们实战1里只讨论最简单的神经网络构建,所以准确率达到0.5以上就符合我们的目标,后面会不断学习新的模型进行优化CIFAR的数据集如下图所示:我们大概所需要的功能包如下:importnumpyasnpimpor
- Vue 框架深度解析:源码分析与实现原理详解
北辰alk
vue前端vue.js前端javascript
文章目录一、Vue核心架构设计1.1整体架构流程图1.2模块职责划分二、响应式系统源码解析2.1核心类关系图2.2核心源码分析2.2.1数据劫持实现2.2.2依赖收集过程三、虚拟DOM与Diff算法实现3.1Diff算法流程图3.2核心Diff源码四、模板编译全流程剖析4.1编译流程图4.2编译阶段源码五、组件系统与生命周期5.1组件初始化流程5.2生命周期源码触发点六、异步更新队列与性能优化6.
- Training-free Neural Architecture Searchthrough Variance of Knowledge of Deep Network Weights(预览版本)
境心镜
免训练深度学习人工智能NAS
代码位置摘要深度学习彻底改变了计算机视觉,但它使用深度网络架构取得了巨大的成功,而这些架构大多是手工制作的,因此可能不是最理想的。神经架构搜索(NAS)旨在通过遵循明确定义的优化范式来弥补这一差距,该范式系统地寻找最佳架构,给定客观标准,例如最大分类准确度。然而,NAS的主要限制是其天文数字般的计算成本,因为它通常需要从头开始训练每个候选网络架构。在本文中,我们旨在通过基于Fisher信息提出一种
- 分子动力学仿真软件:GROMACS_(12).并行计算与性能优化
kkchenjj
分子动力学2分子动力学仿真模拟模拟仿真性能优化
并行计算与性能优化并行计算的基本概念并行计算是指同时使用多个计算资源(如处理器、计算节点等)来执行计算任务,以提高计算效率和速度。在分子动力学仿真中,系统的规模往往非常大,涉及数百万甚至数十亿个原子的相互作用。因此,并行计算是提高仿真效率的关键技术之一。并行计算的类型并行计算主要分为以下几种类型:数据并行:将数据分割成多个部分,每部分由不同的计算资源处理。任务并行:将任务分解成多个子任务,每个子任
- FreeRTOS内存管理之heap_4.c源码解析
星辰&流星
网络嵌入式c语言驱动开发硬件工程
heap_1——最简单,,具有确定性,从静态数组中分配内存,不允许释放内存,不会导致内存碎片化,一锤子买卖,不算真正的动态内存分配;heap_2——非确定性,允许释放内存,但不会合并相邻的空闲块,也就是说没有内存碎片优化措施;heap_3——简单包装了标准malloc()和free(),以保证线程安全,借壳上市,需要连接器设置堆空间分布,且需要编译器库提供malloc和free函数的实现,可能回增
- 基于PyTorch的深度学习5——神经网络工具箱
Wis4e
深度学习pytorch神经网络
可以学习如下内容:•介绍神经网络核心组件。•如何构建一个神经网络。•详细介绍如何构建一个神经网络。•如何使用nn模块中Module及functional。•如何选择优化器。•动态修改学习率参数。5.1核心组件神经网络核心组件不多,把这些组件确定后,这个神经网络基本就确定了。这些核心组件包括:1)层:神经网络的基本结构,将输入张量转换为输出张量。2)模型:层构成的网络。3)损失函数:参数学习的目标函
- 支持向量机 SVM 简要介绍
_夜空的繁星_
机器学习svm支持向量机拉格朗日对偶机器学习
那些我从来没有理解过的概念(1)下面是我在学习过程中遇到的对我很难理解的概念和我抄下来的笔记主要资料来源:《统计学习方法》,维基百科拉格朗日对偶问题是什么假设f(x),ci(x),hj(x)是定义在Rn上的连续可微函数,考虑以下最优化问题:$$\min_{x\inR^n}{f(x)}\c_i(x)\leq0,i=1,2,\dots,k\h_j(x)=0,j=1,2,\dots,l$$是一个凸优化问
- 安卓手机电脑如何让浏览器或者下载程序或者健康监控设备应用软件下载中或者监听中长期运行而不被系统自动关闭
suirosu
智能手机
安卓手机电脑如何让浏览器或者下载程序或者健康监控设备应用软件下载中或者监听中长期运行而不被系统自动关闭。应用软件下载中,或者使用时,常被莫名其妙关闭,或者切换到后台就被关闭,以为不支持长期运行呢,其实是支持的,要设置一下。1.设置搜索启动管理,改为手动管理,并勾选允许后台运行,允许自动启动2.设置搜索电池优化,关闭相关应用的允许电池优化3.上划或者按住中间Home键不动调出正在运行应用,在正在运行
- Android View 设置背景方式全解析
&有梦想的咸鱼&
Android开发大全android
一、整体概述在Android开发中,视图(View)的背景设置是构建用户界面的重要组成部分。一个合适的背景可以提升界面的美观度,增强用户体验。从简单的纯色背景到复杂的动态效果,背景设置不仅影响界面美观,还与性能优化和内存管理密切相关。本文将从多个维度深入探讨AndroidView设置背景的方式,包括XML配置、代码动态设置、不同Drawable类型的使用、高级技巧等,并结合源码分析和实际案例给出最
- 支持向量机——SVM
big_matster
周志华机器学习支持向量机算法
支持向量机支持向量机是一种经典的二分类模型,基本模型定义为特征空间中的最大间隔的线性分类器,其学习的优化目标便是间隔最大化,因此,支持向量机本身可以转换一个凸二次规划求解问题。函数间隔和几何间隔对于二分类学习,假设现在的数据是线性可分的,这时分类学习最基本的想法就是找到一个合理的超平面,该超平面能够将不同类别的样本分开,类似于二维平面使用ax+by+c=0ax+by+c=0ax+by+c=0来表示
- linux系统服务器下jsp传参数乱码
3213213333332132
javajsplinuxwindowsxml
在一次解决乱码问题中, 发现jsp在windows下用js原生的方法进行编码没有问题,但是到了linux下就有问题, escape,encodeURI,encodeURIComponent等都解决不了问题
但是我想了下既然原生的方法不行,我用el标签的方式对中文参数进行加密解密总该可以吧。于是用了java的java.net.URLDecoder,结果还是乱码,最后在绝望之际,用了下面的方法解决了
- Spring 注解区别以及应用
BlueSkator
spring
1. @Autowired
@Autowired是根据类型进行自动装配的。如果当Spring上下文中存在不止一个UserDao类型的bean,或者不存在UserDao类型的bean,会抛出 BeanCreationException异常,这时可以通过在该属性上再加一个@Qualifier注解来声明唯一的id解决问题。
2. @Qualifier
当spring中存在至少一个匹
- printf和sprintf的应用
dcj3sjt126com
PHPsprintfprintf
<?php
printf('b: %b <br>c: %c <br>d: %d <bf>f: %f', 80,80, 80, 80);
echo '<br />';
printf('%0.2f <br>%+d <br>%0.2f <br>', 8, 8, 1235.456);
printf('th
- config.getInitParameter
171815164
parameter
web.xml
<servlet>
<servlet-name>servlet1</servlet-name>
<jsp-file>/index.jsp</jsp-file>
<init-param>
<param-name>str</param-name>
- Ant标签详解--基础操作
g21121
ant
Ant的一些核心概念:
build.xml:构建文件是以XML 文件来描述的,默认构建文件名为build.xml。 project:每个构建文
- [简单]代码片段_数据合并
53873039oycg
代码
合并规则:删除家长phone为空的记录,若一个家长对应多个孩子,保留一条家长记录,家长id修改为phone,对应关系也要修改。
代码如下:
- java 通信技术
云端月影
Java 远程通信技术
在分布式服务框架中,一个最基础的问题就是远程服务是怎么通讯的,在Java领域中有很多可实现远程通讯的技术,例如:RMI、MINA、ESB、Burlap、Hessian、SOAP、EJB和JMS等,这些名词之间到底是些什么关系呢,它们背后到底是基于什么原理实现的呢,了解这些是实现分布式服务框架的基础知识,而如果在性能上有高的要求的话,那深入了解这些技术背后的机制就是必须的了,在这篇blog中我们将来
- string与StringBuilder 性能差距到底有多大
aijuans
之前也看过一些对string与StringBuilder的性能分析,总感觉这个应该对整体性能不会产生多大的影响,所以就一直没有关注这块!
由于学程序初期最先接触的string拼接,所以就一直没改变过自己的习惯!
- 今天碰到 java.util.ConcurrentModificationException 异常
antonyup_2006
java多线程工作IBM
今天改bug,其中有个实现是要对map进行循环,然后有删除操作,代码如下:
Iterator<ListItem> iter = ItemMap.keySet.iterator();
while(iter.hasNext()){
ListItem it = iter.next();
//...一些逻辑操作
ItemMap.remove(it);
}
结果运行报Con
- PL/SQL的类型和JDBC操作数据库
百合不是茶
PL/SQL表标量类型游标PL/SQL记录
PL/SQL的标量类型:
字符,数字,时间,布尔,%type五中类型的
--标量:数据库中预定义类型的变量
--定义一个变长字符串
v_ename varchar2(10);
--定义一个小数,范围 -9999.99~9999.99
v_sal number(6,2);
--定义一个小数并给一个初始值为5.4 :=是pl/sql的赋值号
- Mockito:一个强大的用于 Java 开发的模拟测试框架实例
bijian1013
mockito单元测试
Mockito框架:
Mockito是一个基于MIT协议的开源java测试框架。 Mockito区别于其他模拟框架的地方主要是允许开发者在没有建立“预期”时验证被测系统的行为。对于mock对象的一个评价是测试系统的测
- 精通Oracle10编程SQL(10)处理例外
bijian1013
oracle数据库plsql
/*
*处理例外
*/
--例外简介
--处理例外-传递例外
declare
v_ename emp.ename%TYPE;
begin
SELECT ename INTO v_ename FROM emp
where empno=&no;
dbms_output.put_line('雇员名:'||v_ename);
exceptio
- 【Java】Java执行远程机器上Linux命令
bit1129
linux命令
Java使用ethz通过ssh2执行远程机器Linux上命令,
封装定义Linux机器的环境信息
package com.tom;
import java.io.File;
public class Env {
private String hostaddr; //Linux机器的IP地址
private Integer po
- java通信之Socket通信基础
白糖_
javasocket网络协议
正处于网络环境下的两个程序,它们之间通过一个交互的连接来实现数据通信。每一个连接的通信端叫做一个Socket。一个完整的Socket通信程序应该包含以下几个步骤:
①创建Socket;
②打开连接到Socket的输入输出流;
④按照一定的协议对Socket进行读写操作;
④关闭Socket。
Socket通信分两部分:服务器端和客户端。服务器端必须优先启动,然后等待soc
- angular.bind
boyitech
AngularJSangular.bindAngularJS APIbind
angular.bind 描述: 上下文,函数以及参数动态绑定,返回值为绑定之后的函数. 其中args是可选的动态参数,self在fn中使用this调用。 使用方法: angular.bind(se
- java-13个坏人和13个好人站成一圈,数到7就从圈里面踢出一个来,要求把所有坏人都给踢出来,所有好人都留在圈里。请找出初始时坏人站的位置。
bylijinnan
java
import java.util.ArrayList;
import java.util.List;
public class KickOutBadGuys {
/**
* 题目:13个坏人和13个好人站成一圈,数到7就从圈里面踢出一个来,要求把所有坏人都给踢出来,所有好人都留在圈里。请找出初始时坏人站的位置。
* Maybe you can find out
- Redis.conf配置文件及相关项说明(自查备用)
Kai_Ge
redis
Redis.conf配置文件及相关项说明
# Redis configuration file example
# Note on units: when memory size is needed, it is possible to specifiy
# it in the usual form of 1k 5GB 4M and so forth:
#
- [强人工智能]实现大规模拓扑分析是实现强人工智能的前奏
comsci
人工智能
真不好意思,各位朋友...博客再次更新...
节点数量太少,网络的分析和处理能力肯定不足,在面对机器人控制的需求方面,显得力不从心....
但是,节点数太多,对拓扑数据处理的要求又很高,设计目标也很高,实现起来难度颇大...
- 记录一些常用的函数
dai_lm
java
public static String convertInputStreamToString(InputStream is) {
StringBuilder result = new StringBuilder();
if (is != null)
try {
InputStreamReader inputReader = new InputStreamRead
- Hadoop中小规模集群的并行计算缺陷
datamachine
mapreducehadoop并行计算
注:写这篇文章的初衷是因为Hadoop炒得有点太热,很多用户现有数据规模并不适用于Hadoop,但迫于扩容压力和去IOE(Hadoop的廉价扩展的确非常有吸引力)而尝试。尝试永远是件正确的事儿,但有时候不用太突进,可以调优或调需求,发挥现有系统的最大效用为上策。
-----------------------------------------------------------------
- 小学4年级英语单词背诵第二课
dcj3sjt126com
englishword
egg 蛋
twenty 二十
any 任何
well 健康的,好
twelve 十二
farm 农场
every 每一个
back 向后,回
fast 快速的
whose 谁的
much 许多
flower 花
watch 手表
very 非常,很
sport 运动
Chinese 中国的
- 自己实践了github的webhooks, linux上面的权限需要注意
dcj3sjt126com
githubwebhook
环境, 阿里云服务器
1. 本地创建项目, push到github服务器上面
2. 生成www用户的密钥
sudo -u www ssh-keygen -t rsa -C "xxx@xx.com"
3. 将密钥添加到github帐号的SSH_KEYS里面
3. 用www用户执行克隆, 源使
- Java冒泡排序
蕃薯耀
冒泡排序Java冒泡排序Java排序
冒泡排序
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
蕃薯耀 2015年6月23日 10:40:14 星期二
http://fanshuyao.iteye.com/
- Excle读取数据转换为实体List【基于apache-poi】
hanqunfeng
apache
1.依赖apache-poi
2.支持xls和xlsx
3.支持按属性名称绑定数据值
4.支持从指定行、列开始读取
5.支持同时读取多个sheet
6.具体使用方式参见org.cpframework.utils.excelreader.CP_ExcelReaderUtilTest.java
比如:
Str
- 3个处于草稿阶段的Javascript API介绍
jackyrong
JavaScript
原文:
http://www.sitepoint.com/3-new-javascript-apis-may-want-follow/?utm_source=html5weekly&utm_medium=email
本文中,介绍3个仍然处于草稿阶段,但应该值得关注的Javascript API.
1) Web Alarm API
&
- 6个创建Web应用程序的高效PHP框架
lampcy
Web框架PHP
以下是创建Web应用程序的PHP框架,有coder bay网站整理推荐:
1. CakePHP
CakePHP是一个PHP快速开发框架,它提供了一个用于开发、维护和部署应用程序的可扩展体系。CakePHP使用了众所周知的设计模式,如MVC和ORM,降低了开发成本,并减少了开发人员写代码的工作量。
2. CodeIgniter
CodeIgniter是一个非常小且功能强大的PHP框架,适合需
- 评"救市后中国股市新乱象泛起"谣言
nannan408
首先来看百度百家一位易姓作者的新闻:
三个多星期来股市持续暴跌,跌得投资者及上市公司都处于极度的恐慌和焦虑中,都要寻找自保及规避风险的方式。面对股市之危机,政府突然进入市场救市,希望以此来重建市场信心,以此来扭转股市持续暴跌的预期。而政府进入市场后,由于市场运作方式发生了巨大变化,投资者及上市公司为了自保及为了应对这种变化,中国股市新的乱象也自然产生。
首先,中国股市这两天
- 页面全屏遮罩的实现 方式
Rainbow702
htmlcss遮罩mask
之前做了一个页面,在点击了某个按钮之后,要求页面出现一个全屏遮罩,一开始使用了position:absolute来实现的。当时因为画面大小是固定的,不可以resize的,所以,没有发现问题。
最近用了同样的做法做了一个遮罩,但是画面是可以进行resize的,所以就发现了一个问题,当画面被reisze到浏览器出现了滚动条的时候,就发现,用absolute 的做法是有问题的。后来改成fixed定位就
- 关于angularjs的点滴
tntxia
AngularJS
angular是一个新兴的JS框架,和以往的框架不同的事,Angularjs更注重于js的建模,管理,同时也提供大量的组件帮助用户组建商业化程序,是一种值得研究的JS框架。
Angularjs使我们可以使用MVC的模式来写JS。Angularjs现在由谷歌来维护。
这里我们来简单的探讨一下它的应用。
首先使用Angularjs我
- Nutz--->>反复新建ioc容器的后果
xiaoxiao1992428
DAOmvcIOCnutz
问题:
public class DaoZ {
public static Dao dao() { // 每当需要使用dao的时候就取一次
Ioc ioc = new NutIoc(new JsonLoader("dao.js"));
return ioc.get(