- [学习] 牛顿迭代法:从数学原理到实战
极客不孤独
学习算法python
牛顿迭代法:从数学原理到实战——高效求解方程根的数值方法文章目录牛顿迭代法:从数学原理到实战一、引言:为什么需要牛顿迭代法?二、数学原理:几何直观与公式推导1.**核心思想**2.**几何解释**3.**收敛性分析**三、应用场景:跨领域实战案例四、Python示例:求解ex+x3=0e^x+x^3=0ex+x3=0的根五、优缺点与改进方向六、结语:牛顿法的哲学启示一、引言:为什么需要牛顿迭代法?
- Goursat问题解的公式推导
weixin_30777913
算法
题目问题7.求Goursat问题的解的公式utt−c2uxx=0,x>c∣t∣;(2.C.11)u_{tt}-c^2u_{xx}=0,\quadx>c|t|;\tag{2.C.11}utt−c2uxx=0,x>c∣t∣;(2.C.11)当t0t>0t>0时,u∣x=ct=h(t)u|_{x=ct}=h(t)u∣x=ct=h(t).\tag{2.C.13}其中g(0)=h(0)g(0)=h(0)g(
- RRT*(Rapidly-exploring Random Trees Star)算法 定义+特性+原理+公式+Python示例代码(带详细注释)
快乐的向某
机器人路径规划算法算法python机器学习人工智能动态规划自动驾驶无人机
文章目录引言定义基本原理及公式推导RRT*算法的基本原理公式推导和变量解释特性代码示例Python代码代码运行结果应用案例优化和挑战优化方面面临的挑战总结引言RRT*(Rapidly-exploringRandomTreesStar)算法是一种用于高效路径规划的算法,特别适用于复杂或约束性的环境中。作为RRT(Rapidly-exploringRandomTrees)的改进版本,RRT*不仅继承了
- LLM OS 中的自然语言搜索引擎
计算AI大模型企业级应用开发实战ChatGPT计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
LLMOS中的自然语言搜索引擎关键词:大语言模型、操作系统、自然语言搜索、语义理解、信息检索、人工智能、用户交互文章目录LLMOS中的自然语言搜索引擎1.背景介绍2.核心概念与联系3.核心算法原理&具体操作步骤3.1算法原理概述3.2算法步骤详解3.3算法优缺点3.4算法应用领域4.数学模型和公式&详细讲解&举例说明4.1数学模型构建4.2公式推导过程4.3案例分析与讲解5.项目实践:代码实例和详
- 【LangChain编程:从入门到实践】自定义提示模板原理与应用实战 系列文章
AI天才研究院
AI大模型企业级应用开发实战AI大模型应用入门实战与进阶计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
文章目录【LangChain编程:从入门到实践】自定义提示模板01.背景介绍1.1问题的由来1.2研究现状1.3研究意义1.4本文结构2.核心概念与联系3.核心算法原理&具体操作步骤3.1算法原理概述3.2算法步骤详解3.3算法优缺点3.4算法应用领域4.数学模型和公式&详细讲解&举例说明4.1数学模型构建4.2公式推导过程4.3案例分析与讲解4.4常见问题解答5.项目实践:代码实例和详细解释说明
- GAN生成模型评价体系:从主观感知到客观度量的技术演进
青柚MATLAB学习
对抗网络生成对抗网络GAN评价指标WassFIDInceptionScore
摘要本文系统解析生成对抗网络(GAN)的评价方法体系。首先指出主观评价在人力成本、过拟合误判等方面的局限性,随后依次介绍InceptionScore、ModeScore等经典客观指标的原理与公式,对比KernelMMD、WassersteinDistance等分布度量方法的优劣,最后阐述FID、1-NN分类器等高效评价工具的应用场景。本文结合公式推导与实验结论,为GAN性能评估提供理论与实践指南。
- 生成对抗网络(GAN)基础原理深度解析:从直观理解到形式化表达
青柚MATLAB学习
对抗网络生成对抗网络GAN生成器判别器目标函数交叉熵损失
摘要本文详细解析生成对抗网络(GAN)的核心原理,从通俗类比入手,结合印假钞与警察博弈的案例阐述生成器与判别器的对抗机制;通过模型结构示意图,解析噪声采样、样本生成及判别流程;基于公式推导目标函数的数学本质,剖析判别器与生成器的优化逻辑;最后对比GAN目标函数与交叉熵损失的关联差异。本文结合公式推导与概念对比,助力读者建立GAN基础理论体系。关键词:生成对抗网络GAN生成器判别器目标函数交叉熵损失
- PSNR指标Pytorch实现
这张生成的图像能检测吗
优质GAN模型训练自己的数据集pytorch人工智能机器学习深度学习算法生成对抗网络计算机视觉
GAN模型中的PSNR指标详解1.PSNR基本概念PSNR(PeakSignal-to-NoiseRatio,峰值信噪比)是一个评估图像质量的重要指标,广泛用于衡量GAN生成图像与真实图像之间的相似度。核心思想信号:原始图像的信息噪声:生成图像与原始图像的差异峰值:图像像素的最大可能值(通常是255)PSNR值越高,表示生成图像质量越好,与原始图像越相似。2.数学公式推导MSE(均方误差)首先定义
- 线性回归原理推导与应用(七):逻辑回归原理与公式推导
Smilecoc
机器学习Python数据分析线性回归逻辑回归算法
逻辑回归是一种分类算法,常用于二分类,也就是得出的结果为是和不是,例如通过各种因素判断一个人是否生病,信用卡是否违约等。逻辑回归在社会和自然科学中应用非常广泛,前置知识线性回归逻辑回归的底层方法就是线性回归,所以需要对线性回归有基本的了解。具体的一元,多元线性回归原理在之前的文章中已经讲过,可以查看之前的文章https://blog.csdn.net/qq_42692386/article/det
- 关于贝叶斯公式的理解
程序员
一、贝叶斯公式推导条件概率基础条件概率定义:在事件B发生的条件下,事件A发生的概率P(A∣B)=P(A∩B)/P(B)(P(B)>0)联合概率的两种表达由乘法公式可得:P(A∩B)=P(A∣B)P(B)=P(B∣A)P(A)推导贝叶斯公式联立上述两式,消去联合概率:P(A∣B)=P(B∣A)⋅P(A)/P(B)其中:P(A∣B):后验概率(Posterior)P(A):先验概率(Prior)P(B
- 量化用到的机器学习书籍推荐
输出输入
人工智能+量化EA机器学习
以下是一些适合不同层次读者的机器学习书籍推荐:零基础入门-《机器学习入门必备》:这本书没有复杂的公式推导,而是通过类比、案例和图片,通俗易懂地讲解了机器学习的基本概念、工具、数据处理、建模与优化等内容,非常适合没有任何基础的人工智能爱好者。-《MachineLearningforHumans》:以通俗易懂的方式系统全面地介绍机器学习相关知识,理论部分之后还有充足的实践材料和最新进展与应用,适合初学
- 因果推断的可解释性与可信度:评估因果关系的有效性
AI天才研究院
AIAgent应用开发计算AI大模型应用入门实战与进阶大数据人工智能语言模型AILLMJavaPython架构设计AgentRPA计算AI大模型应用
因果推断的可解释性与可信度:评估因果关系的有效性关键词:因果推断、可解释性、可信度、因果关系评估、反事实分析、因果图、工具变量法、随机化实验文章目录因果推断的可解释性与可信度:评估因果关系的有效性1.背景介绍2.核心概念与联系3.核心算法原理&具体操作步骤3.1算法原理概述3.2算法步骤详解3.3算法优缺点3.4算法应用领域4.数学模型和公式&详细讲解&举例说明4.1数学模型构建4.2公式推导过程
- 数据挖掘助力大数据领域的精准营销
大数据洞察
ai
数据挖掘助力大数据领域的精准营销关键词:数据挖掘、精准营销、大数据分析、机器学习、用户画像、推荐系统、客户细分摘要:本文深入探讨了数据挖掘技术如何赋能大数据领域的精准营销。文章首先介绍了精准营销的背景和挑战,然后详细解析了数据挖掘的核心概念和技术原理,包括用户画像构建、推荐算法和客户细分模型。通过Python代码实现和数学公式推导,展示了如何应用这些技术解决实际问题。文章还提供了实战案例、工具资源
- [16届蓝桥杯 2025 c++省 B] 画展布置
a东方青
蓝桥杯蓝桥杯c++算法
解题思路理解(L)的本质当(B)按平方值从小到大排序后,相邻项的差非负,此时(L)等于区间内最大平方值与最小平方值的差(数学公式推导)滑动窗口找最小差值遍历所有长度为(M)的连续区间(滑动窗口),计算每个区间内最大平方值(末尾元素(b[i+M-1]))与最小平方值(起始元素(b[i]))的差值(b[i+M-1]-b[i]),取这些差值中的最小值,即为(L)的最小值。#includeusingnam
- 分层强化学习:Option-Critic架构算法详解与Python实现
闲人编程
进阶算法案例架构算法python分层强化学习Option-Critic自动驾驶
目录分层强化学习:Option-Critic架构算法详解与Python实现1.引言2.Option-Critic架构算法概述2.1Option-Critic架构的定义2.2Option-Critic架构的优势2.3Option-Critic架构的应用场景3.Option-Critic架构算法的核心概念3.1选项(Options)3.2策略梯度3.3目标函数与梯度更新3.4公式推导4.Option-
- matlab从入门到精通符号计算,《MATLAB 从入门到精通教程》第6章 符号计算【精品】.ppt...
江泓
[摘要]第6章符号运算6.1符号对象的创建和使用6.2符号对象的运算6.3符号表达式的变换6.4符号微积分、极限和级数6.5符号积分变换6.6符号方程的求解6.7符号函数的可视化符号运算的对象是非数值的符号对象,对于像公式推导和因式分解等抽象的运算都可以通过符号运算来解决。MATLAB2006b对应的是SymbolicMathToolbox3.1.5。符号工具箱能够实现微积分运算、线性代数、表达式
- 简述Mean shift 算法及其实现
BryantJD
计算机视觉Meanshift算法聚类图像分割核密度估计特征空间
文章目录Meanshift是什么Meanshift算法的预备知识什么是特征什么是特征空间什么是核密度估计核函数的表示Meanshift算法Meanshift算法的公式推导Meanshift算法的流程Meanshift算法图示Meanshift算法应用MeanShift算法应用在聚类MeanShift算法图像分割Meanshift算法的不足之处参考文献Meanshift是什么均值偏移(Meanshi
- 机器学习常见公式推导
Karamajeff
机器学习人工智能machinelearning
线性层的反向传播对于函数Y=XWY=XWY=XW(注:XXX是一个m×nm\timesnm×n的矩阵,WWW是一个n×kn\timeskn×k的矩阵,YYY是一个m×km\timeskm×k的矩阵。这里的WWW通常代表模型的权重,而XXX代表输入数据。)如何求∂Y∂W\frac{\partialY}{\partialW}∂W∂Y呢,通常我们只关心其一个特定的切片,即∂Yij∂Wrs\frac{\p
- 【强化学习理论】状态价值函数与动作价值函数系列公式推导
Mocode
人工智能笔记
由于时常对状态价值函数与动作价值函数之间的定义区别、公式关系迷惑不清,此次进行梳理并作记录。理解公式推导需要先了解基础定义中几个概念。文章目录基础定义奖励函数回报价值价值函数状态转移矩阵策略状态转移函数状态价值函数动作价值函数状态价值函数与动作价值函数之间的关系==关系1====关系2==贝尔曼方程(BellmanEquation)贝尔曼期望方程(BellmanExpectationEquatio
- 探索大语言模型(LLM):Transformer 与 BERT从原理到实践
艾醒(AiXing-w)
探索大语言模型(LLM)语言模型transformerbert
Transformer与BERT:从原理到实践前言一、背景介绍二、核心公式推导1.注意力机制(AttentionMechanism)2.多头注意力机制(Multi-HeadAttention)3.Transformer编码器(TransformerEncoder)4.BERT的预训练任务三、代码实现1.注意力机制2.多头注意力机制3.Transformer编码器层4.Transformer编码器5
- KISS-ICP核心代码解析
大山同学
代码解析前端算法javascriptSLAM机器人感知定位
文章目录1.核心函数1.GetCorrespondences函数2.BuildLinearSystem函数ICP的高斯牛顿解法公式推导3.高斯牛顿法求解1.核心函数该RegisterFrame函数的主要功能是对输入的点云帧进行配准。它将输入的点云帧与体素哈希图进行匹配,以初始位姿估计为起点,通过迭代最近点(ICP)算法来计算从初始位姿到最终配准位姿的变换矩阵。若体素哈希图为空,则直接返回初始位姿估
- 注意力机制
code 旭
AI人工智能学习python人工智能
实现了Bahdanau式加法注意力的核心计算逻辑。以下是三个线性层设计的完整技术解析:一、数学公式推导注意力分数计算流程:score(hdec,henc)=vT⋅tanh(W1⋅henc+W2⋅hdec)score(h_{dec},h_{enc})=v^T\cdot\tanh(W1\cdoth_{enc}+W2\cdoth_{dec})score(hdec,henc)=vT⋅tanh(W1⋅he
- 周志华《机器学习》——第六章、支持向量机
106106106
支持向量机机器学习人工智能
支持向量机(SupportVectorMachine,简称SVM)是一种经典的二分类模型,基本模型定义为特征空间中最大间隔的线性分类器,其学习的优化目标是间隔最大化,因此支持向量机本身可以转化为一个凸二次规划求解的问题。公式推导太麻烦,下面链接写得非常详细,有空再详细理解,先理解概念。存个链接【机器学习】支持向量机SVM(非常详细)-知乎
- YOLO学习笔记 | 基于YOLOv8的植物病害检测系统
单北斗SLAMer
毕业论文设计YOLO学习从零到1YOLO深度学习python
以下是基于YOLOv8的植物病害检测系统完整技术文档,包含原理分析、数学公式推导及代码实现框架。基于YOLOv8的智能植物病害检测系统研究摘要针对传统植物病害检测方法存在的效率低、泛化性差等问题,本研究提出一种基于改进YOLOv8算法的智能检测系统。通过设计轻量化特征提取网络,优化损失函数,并结合MATLABGUI开发人机交互界面。实验表明,系统在PlantVillage数据集上达到96.2%mA
- UWB:DS-TWR( Double-sided two-way ranging)双边测距公式推导:为啥是乘法?
Ankie(资深技术项目经理)
无线网络技术UWB原理和实操算法UWB测距FIRA双边测距
UWBDS-TWR(Double-sidedtwo-wayranging)双边测距为啥是乘法??公式:我们先看单边Single-SidedTwo-WayRanging(SS-TWR)单边很好理解。symmetricdouble-sidedTWR(SDS-TWR)对称的双边测距再看双边
- Deepmotion技术浅析(四):人体姿态估计
爱研究的小牛
AIGC—虚拟现实AIGC—视频AIGC—游戏制作人工智能深度学习机器学习AIGC
人体姿态估计是DeepMotion动作捕捉和3D重建流程中的核心模块之一。该模块的主要任务是从输入的视频帧中检测并定位人体关键点(如关节、头部、手脚等)的位置。DeepMotion的人体姿态估计模块不仅支持2D关键点检测,还能够进行3D关键点估计,为后续的动作追踪、3D重建和动画生成提供基础数据。包括:1.2D关键点检测工作原理模型架构详解(OpenPose,HRNet)模型结构公式推导训练过程关
- 预测函数控制(PFC)——理论、应用与实践
闲人编程
控制与系统优化算法实战android一维动态系统机器人轨迹跟踪温度调节系统PFC预测函数
目录预测函数控制(PFC)——理论、应用与实践一、引言二、预测函数控制的基本原理1.PFC的核心思想2.数学建模与公式推导3.优势与局限优势局限三、典型案例分析案例一:一维动态系统控制案例描述分析案例二:温度调节系统案例描述分析案例三:机器人轨迹跟踪控制案例描述分析四、基于PyQt6的交互式GUI控制系统五、Python代码实现六、结语预测函数控制(PFC)——理论、应用与实践一、引言在现代控制系
- Elasticsearch多字段搜索与价格范围过滤的Go语言实现
AI天才研究院
计算DeepSeekR1&大数据AI人工智能大模型elasticsearchgolang大数据
文章目录Elasticsearch多字段搜索与价格范围过滤的Go语言实现1.背景介绍2.核心概念与联系3.核心算法原理&具体操作步骤3.1算法原理概述3.2算法步骤详解3.3算法优缺点3.4算法应用领域4.数学模型和公式&详细讲解&举例说明4.1数学模型构建4.2公式推导过程4.3案例分析与讲解TF-IDF计算示例BM25计算示例向量空间模型示例实际应用中的考虑因素5.项目实践:代码实例和详细解释
- 算法 | 基于淘金优化算法GRO的无人机三维路径规划方法研究 (附完整matlab代码,公式推导)
单北斗SLAMer
智能优化算法算法无人机matlab淘金优化算法GRO路径规划三维
=====================================================github:https://github.com/MichaelBeechanCSDN:https://blog.csdn.net/u011344545=====================================================淘金优化算法——无人机三维路径规划
- AI生成内容数字水印实战:隐式版权标识技术解析与代码实现
燃灯工作室
Ai人工智能
技术原理(数学公式推导)1.频域嵌入原理采用离散余弦变换(DCT)在频域嵌入水印,满足不可感知性要求:X(k)=∑n=0N−1x(n)cos[πN(n+12)k]X(k)=\sum_{n=0}^{N-1}x(n)\cos\left[\frac{\pi}{N}\left(n+\frac{1}{2}\right)k\right]X(k)=n=0∑N−1x(n)cos[Nπ(n+21)k]水印嵌入公式
- eclipse maven
IXHONG
eclipse
eclipse中使用maven插件的时候,运行run as maven build的时候报错
-Dmaven.multiModuleProjectDirectory system propery is not set. Check $M2_HOME environment variable and mvn script match.
可以设一个环境变量M2_HOME指
- timer cancel方法的一个小实例
alleni123
多线程timer
package com.lj.timer;
import java.util.Date;
import java.util.Timer;
import java.util.TimerTask;
public class MyTimer extends TimerTask
{
private int a;
private Timer timer;
pub
- MySQL数据库在Linux下的安装
ducklsl
mysql
1.建好一个专门放置MySQL的目录
/mysql/db数据库目录
/mysql/data数据库数据文件目录
2.配置用户,添加专门的MySQL管理用户
>groupadd mysql ----添加用户组
>useradd -g mysql mysql ----在mysql用户组中添加一个mysql用户
3.配置,生成并安装MySQL
>cmake -D
- spring------>>cvc-elt.1: Cannot find the declaration of element
Array_06
springbean
将--------
<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3
- maven发布第三方jar的一些问题
cugfy
maven
maven中发布 第三方jar到nexus仓库使用的是 deploy:deploy-file命令
有许多参数,具体可查看
http://maven.apache.org/plugins/maven-deploy-plugin/deploy-file-mojo.html
以下是一个例子:
mvn deploy:deploy-file -DgroupId=xpp3
- MYSQL下载及安装
357029540
mysql
好久没有去安装过MYSQL,今天自己在安装完MYSQL过后用navicat for mysql去厕测试链接的时候出现了10061的问题,因为的的MYSQL是最新版本为5.6.24,所以下载的文件夹里没有my.ini文件,所以在网上找了很多方法还是没有找到怎么解决问题,最后看到了一篇百度经验里有这个的介绍,按照其步骤也完成了安装,在这里给大家分享下这个链接的地址
- ios TableView cell的布局
张亚雄
tableview
cell.imageView.image = [UIImage imageNamed:[imageArray objectAtIndex:[indexPath row]]];
CGSize itemSize = CGSizeMake(60, 50);
&nbs
- Java编码转义
adminjun
java编码转义
import java.io.UnsupportedEncodingException;
/**
* 转换字符串的编码
*/
public class ChangeCharset {
/** 7位ASCII字符,也叫作ISO646-US、Unicode字符集的基本拉丁块 */
public static final Strin
- Tomcat 配置和spring
aijuans
spring
简介
Tomcat启动时,先找系统变量CATALINA_BASE,如果没有,则找CATALINA_HOME。然后找这个变量所指的目录下的conf文件夹,从中读取配置文件。最重要的配置文件:server.xml 。要配置tomcat,基本上了解server.xml,context.xml和web.xml。
Server.xml -- tomcat主
- Java打印当前目录下的所有子目录和文件
ayaoxinchao
递归File
其实这个没啥技术含量,大湿们不要操笑哦,只是做一个简单的记录,简单用了一下递归算法。
import java.io.File;
/**
* @author Perlin
* @date 2014-6-30
*/
public class PrintDirectory {
public static void printDirectory(File f
- linux安装mysql出现libs报冲突解决
BigBird2012
linux
linux安装mysql出现libs报冲突解决
安装mysql出现
file /usr/share/mysql/ukrainian/errmsg.sys from install of MySQL-server-5.5.33-1.linux2.6.i386 conflicts with file from package mysql-libs-5.1.61-4.el6.i686
- jedis连接池使用实例
bijian1013
redisjedis连接池jedis
实例代码:
package com.bijian.study;
import java.util.ArrayList;
import java.util.List;
import redis.clients.jedis.Jedis;
import redis.clients.jedis.JedisPool;
import redis.clients.jedis.JedisPoo
- 关于朋友
bingyingao
朋友兴趣爱好维持
成为朋友的必要条件:
志相同,道不合,可以成为朋友。譬如马云、周星驰一个是商人,一个是影星,可谓道不同,但都很有梦想,都要在各自领域里做到最好,当他们遇到一起,互相欣赏,可以畅谈两个小时。
志不同,道相合,也可以成为朋友。譬如有时候看到两个一个成绩很好每次考试争做第一,一个成绩很差的同学是好朋友。他们志向不相同,但他
- 【Spark七十九】Spark RDD API一
bit1129
spark
aggregate
package spark.examples.rddapi
import org.apache.spark.{SparkConf, SparkContext}
//测试RDD的aggregate方法
object AggregateTest {
def main(args: Array[String]) {
val conf = new Spar
- ktap 0.1 released
bookjovi
kerneltracing
Dear,
I'm pleased to announce that ktap release v0.1, this is the first official
release of ktap project, it is expected that this release is not fully
functional or very stable and we welcome bu
- 能保存Properties文件注释的Properties工具类
BrokenDreams
properties
今天遇到一个小需求:由于java.util.Properties读取属性文件时会忽略注释,当写回去的时候,注释都没了。恰好一个项目中的配置文件会在部署后被某个Java程序修改一下,但修改了之后注释全没了,可能会给以后的参数调整带来困难。所以要解决这个问题。
&nb
- 读《研磨设计模式》-代码笔记-外观模式-Facade
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
/*
* 百度百科的定义:
* Facade(外观)模式为子系统中的各类(或结构与方法)提供一个简明一致的界面,
* 隐藏子系统的复杂性,使子系统更加容易使用。他是为子系统中的一组接口所提供的一个一致的界面
*
* 可简单地
- After Effects教程收集
cherishLC
After Effects
1、中文入门
http://study.163.com/course/courseMain.htm?courseId=730009
2、videocopilot英文入门教程(中文字幕)
http://www.youku.com/playlist_show/id_17893193.html
英文原址:
http://www.videocopilot.net/basic/
素
- Linux Apache 安装过程
crabdave
apache
Linux Apache 安装过程
下载新版本:
apr-1.4.2.tar.gz(下载网站:http://apr.apache.org/download.cgi)
apr-util-1.3.9.tar.gz(下载网站:http://apr.apache.org/download.cgi)
httpd-2.2.15.tar.gz(下载网站:http://httpd.apac
- Shell学习 之 变量赋值和引用
daizj
shell变量引用赋值
本文转自:http://www.cnblogs.com/papam/articles/1548679.html
Shell编程中,使用变量无需事先声明,同时变量名的命名须遵循如下规则:
首个字符必须为字母(a-z,A-Z)
中间不能有空格,可以使用下划线(_)
不能使用标点符号
不能使用bash里的关键字(可用help命令查看保留关键字)
需要给变量赋值时,可以这么写:
- Java SE 第一讲(Java SE入门、JDK的下载与安装、第一个Java程序、Java程序的编译与执行)
dcj3sjt126com
javajdk
Java SE 第一讲:
Java SE:Java Standard Edition
Java ME: Java Mobile Edition
Java EE:Java Enterprise Edition
Java是由Sun公司推出的(今年初被Oracle公司收购)。
收购价格:74亿美金
J2SE、J2ME、J2EE
JDK:Java Development
- YII给用户登录加上验证码
dcj3sjt126com
yii
1、在SiteController中添加如下代码:
/**
* Declares class-based actions.
*/
public function actions() {
return array(
// captcha action renders the CAPTCHA image displ
- Lucene使用说明
dyy_gusi
Lucenesearch分词器
Lucene使用说明
1、lucene简介
1.1、什么是lucene
Lucene是一个全文搜索框架,而不是应用产品。因此它并不像baidu或者googleDesktop那种拿来就能用,它只是提供了一种工具让你能实现这些产品和功能。
1.2、lucene能做什么
要回答这个问题,先要了解lucene的本质。实际
- 学习编程并不难,做到以下几点即可!
gcq511120594
数据结构编程算法
不论你是想自己设计游戏,还是开发iPhone或安卓手机上的应用,还是仅仅为了娱乐,学习编程语言都是一条必经之路。编程语言种类繁多,用途各 异,然而一旦掌握其中之一,其他的也就迎刃而解。作为初学者,你可能要先从Java或HTML开始学,一旦掌握了一门编程语言,你就发挥无穷的想象,开发 各种神奇的软件啦。
1、确定目标
学习编程语言既充满乐趣,又充满挑战。有些花费多年时间学习一门编程语言的大学生到
- Java面试十问之三:Java与C++内存回收机制的差别
HNUlanwei
javaC++finalize()堆栈内存回收
大家知道, Java 除了那 8 种基本类型以外,其他都是对象类型(又称为引用类型)的数据。 JVM 会把程序创建的对象存放在堆空间中,那什么又是堆空间呢?其实,堆( Heap)是一个运行时的数据存储区,从它可以分配大小各异的空间。一般,运行时的数据存储区有堆( Heap)和堆栈( Stack),所以要先看它们里面可以分配哪些类型的对象实体,然后才知道如何均衡使用这两种存储区。一般来说,栈中存放的
- 第二章 Nginx+Lua开发入门
jinnianshilongnian
nginxlua
Nginx入门
本文目的是学习Nginx+Lua开发,对于Nginx基本知识可以参考如下文章:
nginx启动、关闭、重启
http://www.cnblogs.com/derekchen/archive/2011/02/17/1957209.html
agentzh 的 Nginx 教程
http://openresty.org/download/agentzh-nginx-tutor
- MongoDB windows安装 基本命令
liyonghui160com
windows安装
安装目录:
D:\MongoDB\
新建目录
D:\MongoDB\data\db
4.启动进城:
cd D:\MongoDB\bin
mongod -dbpath D:\MongoDB\data\db
&n
- Linux下通过源码编译安装程序
pda158
linux
一、程序的组成部分 Linux下程序大都是由以下几部分组成: 二进制文件:也就是可以运行的程序文件 库文件:就是通常我们见到的lib目录下的文件 配置文件:这个不必多说,都知道 帮助文档:通常是我们在linux下用man命令查看的命令的文档
二、linux下程序的存放目录 linux程序的存放目录大致有三个地方: /etc, /b
- WEB开发编程的职业生涯4个阶段
shw3588
编程Web工作生活
觉得自己什么都会
2007年从学校毕业,凭借自己原创的ASP毕业设计,以为自己很厉害似的,信心满满去东莞找工作,找面试成功率确实很高,只是工资不高,但依旧无法磨灭那过分的自信,那时候什么考勤系统、什么OA系统、什么ERP,什么都觉得有信心,这样的生涯大概持续了约一年。
根本不是自己想的那样
2008年开始接触很多工作相关的东西,发现太多东西自己根本不会,都需要去学,不管是asp还是js,
- 遭遇jsonp同域下变作post请求的坑
vb2005xu
jsonp同域post
今天迁移一个站点时遇到一个坑爹问题,同一个jsonp接口在跨域时都能调用成功,但是在同域下调用虽然成功,但是数据却有问题. 此处贴出我的后端代码片段
$mi_id = htmlspecialchars(trim($_GET['mi_id ']));
$mi_cv = htmlspecialchars(trim($_GET['mi_cv ']));
贴出我前端代码片段:
$.aj