/* *Copyright (c) 2015 , 烟台大学计算机学院 *All right resvered . *文件名称: 树和二叉树.cpp *作 者: 郑兆涵 *树和二叉树————二叉树遍历的递归算法 */
问题:
实现二叉树的先序、中序、后序遍历的递归算法,并对用”A(B(D,E(H(J,K(L,M(,N))))),C(F,G(,I)))”创建的二叉树进行测试。
编程代码:
//头文件:btree.h,包含定义顺序表数据结构的代码、宏定义、要实现算法的函数的声明 #ifndef BTREE_H_INCLUDED #define BTREE_H_INCLUDED #define MaxSize 100 typedef char ElemType; typedef struct node { ElemType data; //数据元素 struct node *lchild; //指向左孩子 struct node *rchild; //指向右孩子 } BTNode; void CreateBTNode(BTNode *&b,char *str); //由str串创建二叉链 BTNode *FindNode(BTNode *b,ElemType x); //返回data域为x的节点指针 BTNode *LchildNode(BTNode *p); //返回*p节点的左孩子节点指针 BTNode *RchildNode(BTNode *p); //返回*p节点的右孩子节点指针 int BTNodeDepth(BTNode *b); //求二叉树b的深度 void DispBTNode(BTNode *b); //以括号表示法输出二叉树 void DestroyBTNode(BTNode *&b); //销毁二叉树 #endif // BTREE_H_INCLUDED //源文件:btree.cpp,包含实现各种算法的函数的定义 #include <stdio.h> #include <malloc.h> #include "btree.h" void CreateBTNode(BTNode *&b,char *str) //由str串创建二叉链 { BTNode *St[MaxSize],*p=NULL; int top=-1,k,j=0; char ch; b=NULL; //建立的二叉树初始时为空 ch=str[j]; while (ch!='\0') //str未扫描完时循环 { switch(ch) { case '(': top++; St[top]=p; k=1; break; //为左节点 case ')': top--; break; case ',': k=2; break; //为右节点 default: p=(BTNode *)malloc(sizeof(BTNode)); p->data=ch; p->lchild=p->rchild=NULL; if (b==NULL) //p指向二叉树的根节点 b=p; else //已建立二叉树根节点 { switch(k) { case 1: St[top]->lchild=p; break; case 2: St[top]->rchild=p; break; } } } j++; ch=str[j]; } } BTNode *FindNode(BTNode *b,ElemType x) //返回data域为x的节点指针 { BTNode *p; if (b==NULL) return NULL; else if (b->data==x) return b; else { p=FindNode(b->lchild,x); if (p!=NULL) return p; else return FindNode(b->rchild,x); } } BTNode *LchildNode(BTNode *p) //返回*p节点的左孩子节点指针 { return p->lchild; } BTNode *RchildNode(BTNode *p) //返回*p节点的右孩子节点指针 { return p->rchild; } int BTNodeDepth(BTNode *b) //求二叉树b的深度 { int lchilddep,rchilddep; if (b==NULL) return(0); //空树的高度为0 else { lchilddep=BTNodeDepth(b->lchild); //求左子树的高度为lchilddep rchilddep=BTNodeDepth(b->rchild); //求右子树的高度为rchilddep return (lchilddep>rchilddep)? (lchilddep+1):(rchilddep+1); } } void DispBTNode(BTNode *b) //以括号表示法输出二叉树 { if (b!=NULL) { printf("%c",b->data); if (b->lchild!=NULL || b->rchild!=NULL) { printf("("); DispBTNode(b->lchild); if (b->rchild!=NULL) printf(","); DispBTNode(b->rchild); printf(")"); } } } void DestroyBTNode(BTNode *&b) //销毁二叉树 { if (b!=NULL) { DestroyBTNode(b->lchild); DestroyBTNode(b->rchild); free(b); } } //在建立算法库过程中,为了完成测试,再同一项目(project)中建立一个源文件(如main.cpp),编制main函数,完成相关的测试工作。 #include <stdio.h> #include "btree.h" int main() { BTNode *b,*p,*lp,*rp;; printf(" (1)创建二叉树:"); CreateBTNode(b,"A(B(D,E(H(J,K(L,M(,N))))),C(F,G(,I)))"); printf("\n"); printf(" (2)输出二叉树:"); DispBTNode(b); printf("\n"); printf(" (3)查找H节点:"); p=FindNode(b,'H'); if (p!=NULL) { lp=LchildNode(p); if (lp!=NULL) printf("左孩子为%c ",lp->data); else printf("无左孩子 "); rp=RchildNode(p); if (rp!=NULL) printf("右孩子为%c",rp->data); else printf("无右孩子 "); } else printf(" 未找到!"); printf("\n"); printf(" (4)二叉树b的深度:%d\n",BTNodeDepth(b)); printf(" (5)释放二叉树b\n"); DestroyBTNode(b); return 0; } //编写main函数,进行程序测试 #include <stdio.h> #include "btree.h" void PreOrder(BTNode *b) //先序遍历的递归算法 { if (b!=NULL) { printf("%c ",b->data); //访问根节点 PreOrder(b->lchild); //递归访问左子树 PreOrder(b->rchild); //递归访问右子树 } } void InOrder(BTNode *b) //中序遍历的递归算法 { if (b!=NULL) { InOrder(b->lchild); //递归访问左子树 printf("%c ",b->data); //访问根节点 InOrder(b->rchild); //递归访问右子树 } } void PostOrder(BTNode *b) //后序遍历的递归算法 { if (b!=NULL) { PostOrder(b->lchild); //递归访问左子树 PostOrder(b->rchild); //递归访问右子树 printf("%c ",b->data); //访问根节点 } } int main() { BTNode *b; CreateBTNode(b,"A(B(D,E(H(J,K(L,M(,N))))),C(F,G(,I)))"); printf("二叉树b:"); DispBTNode(b); printf("\n"); printf("先序遍历序列:\n"); PreOrder(b); printf("\n"); printf("中序遍历序列:\n"); InOrder(b); printf("\n"); printf("后序遍历序列:\n"); PostOrder(b); printf("\n"); DestroyBTNode(b); return 0; }
输出结果:
我学到了:
二叉树的遍历是按照一定次序访问二叉树中所有节点,并且每个节点仅访问一次的过程。它是最基本的运算,是二叉树中所有其他运算的基础。
在遍历一棵树时,根据访问节点和遍历子树的先后关系有两种遍历方法,即,先根和后根的遍历。在二叉树中,左子树和右子树是右严格区别的,因此在遍历一颗非空二叉树的时候,根据访问根节点、遍历左子树和右子树之间的先后关系可以组合成六种遍历方法。(以规定先遍历左子树,后遍历右子树的递归方法为例):
(1)先序遍历:访问根节点→先序遍历左子树→先序遍历右子树,如图,则此二叉树的先序序列为:ABDGCEF。在二叉树的先序序列中,第一个元素为根节点对应元素。
(2)中序遍历:中序遍历左子树→访问根节点→中序遍历右子树,如图,则此二叉树的中序序列为:DGBAECF。在二叉树的中序序列中,根节点在左子树和右子树中间。
(3)后序遍历:后续遍历左子树→后续遍历右子树→访问根节点,如图,则此二叉树的后序序列为:GDBEFCA。在二叉树的后序序列中,最后的元素为根节点对应元素。
图: