我们首先从一个简单的例子开始分析
button.setOnClickListener(new View.OnClickListener() { @Override public void onClick(View view) { System.out.println("执行onClick"); } }); button.setOnTouchListener(new View.OnTouchListener() { @Override public boolean onTouch(View view, MotionEvent event) { System.out.println("执行onTouch的"+event.getAction()); return false; } });
这段代码经常出现在我们绑定按钮监听事件的情况下,但是你能确定当同时为按钮绑定onClick和onTouch事件的情况下会首先执行哪个事件么?我们来看看输出结果:
04-29 22:52:43.411: I/System.out(845): 执行onTouch的0
04-29 22:52:43.481: I/System.out(845): 执行onTouch的1
04-29 22:52:43.572: I/System.out(845): 执行onClick
也许你的手会抖几下,那么你的输出结果将会多几个执行onTouch的2的值;
但是不管怎么说,首先还是会先执行的onTouch方法,随后onTouch执行结束才会执行onClick方法,除此之外,我们还发现onTouch方法是有返回值的,上面实例中,返回值是false,假如我们将该返回值设置为true的话,程序的输出结果是:
04-29 23:25:15.082: I/System.out(966): 执行onTouch的0
04-29 23:25:15.161: I/System.out(966): 执行onTouch的1
不管你怎么点击按钮,都不会执行onClick方法,这更加印证了onTouch优先于onClick方法执行,当onTouch返回值设置为true的时候我们可以理解为onTouch方法将事件消费掉了,不再会传递下去;
平常的应用就是这样啦,接下来从源码的角度分析一下造成这种情况的原因:
首先分析之前应该明白的一点就是触摸屏事件首先传递到的是ViewGroup的,他是我们平常的各种布局的父类或者间接父类,这点可以从android官方文档中看到:
可以看出,LinearLayout以及各种布局文件都是他的子类,ViewGroup是一组View的集合,他包含很多子View和子ViewGroup,因此在探讨ViewGroup的事件分发机制之前我们首先应该看看View的事件分发机制;
首先应该明白的是每当触摸一个控件的时候都会调用该控件的dispatchTouchEvent方法,以上面的Button类为例,发现Button类中不存在dispatchTouchEvent方法,那么就到他的父类TextView中寻找,发现TextView中也不存在这个方法,随后到TextView的父类View中去寻找,终于找到啦!
public boolean dispatchTouchEvent(MotionEvent event) { if (mInputEventConsistencyVerifier != null) { mInputEventConsistencyVerifier.onTouchEvent(event, 0); } if (onFilterTouchEventForSecurity(event)) { //noinspection SimplifiableIfStatement ListenerInfo li = mListenerInfo; if (li != null && li.mOnTouchListener != null && (mViewFlags & ENABLED_MASK) == ENABLED && li.mOnTouchListener.onTouch(this, event)) { return true; } if (onTouchEvent(event)) { return true; } } if (mInputEventConsistencyVerifier != null) { mInputEventConsistencyVerifier.onUnhandledEvent(event, 0); } return false; }
这段源码的核心代码在第9行,他会首先查看下li是否为null以及li中的mOnTouchListener是否为null,(mViewFlags & ENABLED_MASK)==ENABLE判断当前控件是否是ENABLE的,那么这里的li到底是什么呢?第8行看到,li是等于 mListenerInfo的ListenerInfo对象,那么mListenerInfo是在哪里赋值的呢?
ListenerInfo getListenerInfo() { if (mListenerInfo != null) { return mListenerInfo; } mListenerInfo = new ListenerInfo(); return mListenerInfo; }可以看到是调用getListenerInfo方法来生成的,那么li中的属性mOnTouchListener是在哪里赋值的呢?
public void setOnTouchListener(OnTouchListener l) { getListenerInfo().mOnTouchListener = l; }发现就是将我们平常使用setOnTouchListener的参数设置为了li的mOnTouchListener属性,那么当li != null && li.mOnTouchListener != null && (mViewFlags & ENABLED_MASK) == ENABLED为true的时候会执行最后一个条件判断语句,也就是我们在setOnTouchListener里面经常重写的那个方法onTouch啦,这个方法会有一个返回值,当返回值为true的时候执行if语句块中的内容,直接返回true,那么dispatchTouchEvent方法执行结束,也就是整个事件分发已经结束了,所以上面例子中当我们将onTouch方法的返回值设置为true的时候,并不会执行onClick方法,因为程序在这个if语句块中已经返回了;
那么我们有理由相信第14行的if语句块中的onTouchEvent方法肯定与onClick方法有关系,来看看源码:
public boolean onTouchEvent(MotionEvent event) { final int viewFlags = mViewFlags; if ((viewFlags & ENABLED_MASK) == DISABLED) { if (event.getAction() == MotionEvent.ACTION_UP && (mPrivateFlags & PFLAG_PRESSED) != 0) { setPressed(false); } // A disabled view that is clickable still consumes the touch // events, it just doesn't respond to them. return (((viewFlags & CLICKABLE) == CLICKABLE || (viewFlags & LONG_CLICKABLE) == LONG_CLICKABLE)); } if (mTouchDelegate != null) { if (mTouchDelegate.onTouchEvent(event)) { return true; } } if (((viewFlags & CLICKABLE) == CLICKABLE || (viewFlags & LONG_CLICKABLE) == LONG_CLICKABLE)) { switch (event.getAction()) { case MotionEvent.ACTION_UP: boolean prepressed = (mPrivateFlags & PFLAG_PREPRESSED) != 0; if ((mPrivateFlags & PFLAG_PRESSED) != 0 || prepressed) { // take focus if we don't have it already and we should in // touch mode. boolean focusTaken = false; if (isFocusable() && isFocusableInTouchMode() && !isFocused()) { focusTaken = requestFocus(); } if (prepressed) { // The button is being released before we actually // showed it as pressed. Make it show the pressed // state now (before scheduling the click) to ensure // the user sees it. setPressed(true); } if (!mHasPerformedLongPress) { // This is a tap, so remove the longpress check removeLongPressCallback(); // Only perform take click actions if we were in the pressed state if (!focusTaken) { // Use a Runnable and post this rather than calling // performClick directly. This lets other visual state // of the view update before click actions start. if (mPerformClick == null) { mPerformClick = new PerformClick(); } if (!post(mPerformClick)) { performClick(); } } } if (mUnsetPressedState == null) { mUnsetPressedState = new UnsetPressedState(); } if (prepressed) { postDelayed(mUnsetPressedState, ViewConfiguration.getPressedStateDuration()); } else if (!post(mUnsetPressedState)) { // If the post failed, unpress right now mUnsetPressedState.run(); } removeTapCallback(); } break; case MotionEvent.ACTION_DOWN: mHasPerformedLongPress = false; if (performButtonActionOnTouchDown(event)) { break; } // Walk up the hierarchy to determine if we're inside a scrolling container. boolean isInScrollingContainer = isInScrollingContainer(); // For views inside a scrolling container, delay the pressed feedback for // a short period in case this is a scroll. if (isInScrollingContainer) { mPrivateFlags |= PFLAG_PREPRESSED; if (mPendingCheckForTap == null) { mPendingCheckForTap = new CheckForTap(); } postDelayed(mPendingCheckForTap, ViewConfiguration.getTapTimeout()); } else { // Not inside a scrolling container, so show the feedback right away setPressed(true); checkForLongClick(0); } break; case MotionEvent.ACTION_CANCEL: setPressed(false); removeTapCallback(); removeLongPressCallback(); break; case MotionEvent.ACTION_MOVE: final int x = (int) event.getX(); final int y = (int) event.getY(); // Be lenient about moving outside of buttons if (!pointInView(x, y, mTouchSlop)) { // Outside button removeTapCallback(); if ((mPrivateFlags & PFLAG_PRESSED) != 0) { // Remove any future long press/tap checks removeLongPressCallback(); setPressed(false); } } break; } return true; } return false; }
这个方法有点长,我们仅看核心部分,首先第4行的if语句的作用在于可能当前View是disabled的,但是仍然是可点击的,这种情况下我们同样需要消费掉这个Touch事件,只不过不对这个Touch事件做任何事情而已,只是返回true而已;第20行,如果当前控件是可点击的话,则进入switch里面判断当前事件的类型,我们进入MotionEvent.ACTION_UP里面查看将会发现经过层层if判断,最终将会执行第54行的performClick方法,进入这个方法里面看看执行了些什么操作:
public boolean performClick() { sendAccessibilityEvent(AccessibilityEvent.TYPE_VIEW_CLICKED); ListenerInfo li = mListenerInfo; if (li != null && li.mOnClickListener != null) { playSoundEffect(SoundEffectConstants.CLICK); li.mOnClickListener.onClick(this); return true; } return false; }第5行判断li以及他的属性mOnClickListener是否为null,聪明的你一定会猜到mOnClickListener的赋值操作和前面的mOnTouchListener将是一样的
public void setOnClickListener(OnClickListener l) { if (!isClickable()) { setClickable(true); } getListenerInfo().mOnClickListener = l; }没错吧,最后执行他的onClick方法就行啦,当然平时我们是重写这个方法的;
一切都变的那么明了了,其实如果说onClick方法执行在onTouch方法之后具体有多后呢?刚刚就已经看出来了,在我们的手指即将离开控件的时候,即MotionEvent.ACTION_UP情况下才会执行onClick方法;
好啦,View的事件分发过程就已经介绍结束啦,我们做个总结一下马上看看事件是怎么从ViewGroup传递到View的:
首先在每个控件View上面触发事件的时候都会首先执行dispatchTouchEvent方法,接着在这个方法里面首先会查看是否有touch事件绑定,有的话直接执行该touch事件的onTouch方法,并且如果onTouch方法返回的是true的话,则dispatchTouchEvent方法直接返回true,执行结束;如果没有绑定touch事件或者onTouch方法返回false的话,则执行onTouchEvent方法,在这个方法switch的MotionEvent.ACTION_UP这个case情况下调用performClick,进而调用onClick方法执行点击事件,执行结束之后返回true,最后dispatchTouchEvent方法返回,事件分发结束;
前面已经提到过事件是从ViewGroup传递到View的,那么这个过程又是怎么的呢?
来,我们看个例子:
button.setOnClickListener(new View.OnClickListener() { @Override public void onClick(View view) { System.out.println("执行了Button的onClick方法"); } }); relativeLayout.setOnTouchListener(new View.OnTouchListener() { @Override public boolean onTouch(View arg0, MotionEvent arg1) { System.out.println("执行了RelativeLayout的onTouch方法,action为: "+arg1.getAction()); return false; } });
我们分别为Button以及RealtiveLayout设置了Click监听事件
点击button的输出为:
04-30 02:46:45.131: I/System.out(1164): 执行了Button的onClick方法
点击屏幕空白区域的输出为:
04-30 02:52:57.305: I/System.out(1220): 执行了RelativeLayout的onTouch方法,action为: 0
也就是当我们直接点击button按钮的时候是不会执行RelativeLayout的onTouch方法的,在这里Button按钮相当于是View,而RelativeLayout相当于ViewGroup,前面已经提到事件是从ViewGroup传递到View的,事实依据就是:
假如我们认为是从View传递到ViewGroup,那么只要我们找到一种情况就是点击View控件的时候触发的只是ViewGroup绑定的方法而不是View绑定的方法的话,我们就可以认为是ViewGroup消费了事件,因此事件是ViewGroup到View的,接下来举出这样的例子:
我们自己来实现一个RelativeLayout,并且重写onInterceptTouchEvent方法,这个方法的原型是在ViewGroup里面的,原型见下:
public boolean onInterceptTouchEvent(MotionEvent ev) { return false; }就是这么简单,只是返回false而已;
我们自定义的RelativeLayout命名为MyRelativeLayout:
public class MyRelativeLayout extends RelativeLayout{ public MyRelativeLayout(Context context) { super(context); } public MyRelativeLayout(Context context, AttributeSet attrs) { super(context,attrs); } @Override public boolean onInterceptTouchEvent(MotionEvent ev) { return true; } }可见我们把onInterceptTouchEvent的返回值修改成了true,在将自定义布局引入到布局文件之后,重新执行程序会发现不管我们是点击button按钮还是点击空白区域输出的结果都是:
04-30 03:12:36.901: I/System.out(1310): 执行了RelativeLayout的onTouch方法,action为: 0
这也就是说当我们把onInterceptTouchEvent的返回值修改成了true,可以理解为当前布局也就是ViewGroup消费了事件,事件没有再向下传递了,也就说明了事件是从ViewGroup传递到View的啦!
那么上面我们说过触发View控件的事件首先会触发其dispatchTouchEvent事件,那么其实实际上呢,触发这个方法的本质上就已经可以说成是ViewGroup触发的啦,那么我们进入ViewGroup的源码中看看他的dispatchTouchEvent方法是什么样子的呢?
@Override public boolean dispatchTouchEvent(MotionEvent ev) { if (mInputEventConsistencyVerifier != null) { mInputEventConsistencyVerifier.onTouchEvent(ev, 1); } boolean handled = false; if (onFilterTouchEventForSecurity(ev)) { final int action = ev.getAction(); final int actionMasked = action & MotionEvent.ACTION_MASK; // Handle an initial down. if (actionMasked == MotionEvent.ACTION_DOWN) { // Throw away all previous state when starting a new touch gesture. // The framework may have dropped the up or cancel event for the previous gesture // due to an app switch, ANR, or some other state change. cancelAndClearTouchTargets(ev); resetTouchState(); } // Check for interception. final boolean intercepted; if (actionMasked == MotionEvent.ACTION_DOWN || mFirstTouchTarget != null) { final boolean disallowIntercept = (mGroupFlags & FLAG_DISALLOW_INTERCEPT) != 0; if (!disallowIntercept) { intercepted = onInterceptTouchEvent(ev); ev.setAction(action); // restore action in case it was changed } else { intercepted = false; } } else { // There are no touch targets and this action is not an initial down // so this view group continues to intercept touches. intercepted = true; } // Check for cancelation. final boolean canceled = resetCancelNextUpFlag(this) || actionMasked == MotionEvent.ACTION_CANCEL; // Update list of touch targets for pointer down, if needed. final boolean split = (mGroupFlags & FLAG_SPLIT_MOTION_EVENTS) != 0; TouchTarget newTouchTarget = null; boolean alreadyDispatchedToNewTouchTarget = false; if (!canceled && !intercepted) { if (actionMasked == MotionEvent.ACTION_DOWN || (split && actionMasked == MotionEvent.ACTION_POINTER_DOWN) || actionMasked == MotionEvent.ACTION_HOVER_MOVE) { final int actionIndex = ev.getActionIndex(); // always 0 for down final int idBitsToAssign = split ? 1 << ev.getPointerId(actionIndex) : TouchTarget.ALL_POINTER_IDS; // Clean up earlier touch targets for this pointer id in case they // have become out of sync. removePointersFromTouchTargets(idBitsToAssign); final int childrenCount = mChildrenCount; if (newTouchTarget == null && childrenCount != 0) { final float x = ev.getX(actionIndex); final float y = ev.getY(actionIndex); // Find a child that can receive the event. // Scan children from front to back. final View[] children = mChildren; final boolean customOrder = isChildrenDrawingOrderEnabled(); for (int i = childrenCount - 1; i >= 0; i--) { final int childIndex = customOrder ? getChildDrawingOrder(childrenCount, i) : i; final View child = children[childIndex]; if (!canViewReceivePointerEvents(child) || !isTransformedTouchPointInView(x, y, child, null)) { continue; } newTouchTarget = getTouchTarget(child); if (newTouchTarget != null) { // Child is already receiving touch within its bounds. // Give it the new pointer in addition to the ones it is handling. newTouchTarget.pointerIdBits |= idBitsToAssign; break; } resetCancelNextUpFlag(child); if (dispatchTransformedTouchEvent(ev, false, child, idBitsToAssign)) { // Child wants to receive touch within its bounds. mLastTouchDownTime = ev.getDownTime(); mLastTouchDownIndex = childIndex; mLastTouchDownX = ev.getX(); mLastTouchDownY = ev.getY(); newTouchTarget = addTouchTarget(child, idBitsToAssign); alreadyDispatchedToNewTouchTarget = true; break; } } } if (newTouchTarget == null && mFirstTouchTarget != null) { // Did not find a child to receive the event. // Assign the pointer to the least recently added target. newTouchTarget = mFirstTouchTarget; while (newTouchTarget.next != null) { newTouchTarget = newTouchTarget.next; } newTouchTarget.pointerIdBits |= idBitsToAssign; } } } // Dispatch to touch targets. if (mFirstTouchTarget == null) { // No touch targets so treat this as an ordinary view. handled = dispatchTransformedTouchEvent(ev, canceled, null, TouchTarget.ALL_POINTER_IDS); } else { // Dispatch to touch targets, excluding the new touch target if we already // dispatched to it. Cancel touch targets if necessary. TouchTarget predecessor = null; TouchTarget target = mFirstTouchTarget; while (target != null) { final TouchTarget next = target.next; if (alreadyDispatchedToNewTouchTarget && target == newTouchTarget) { handled = true; } else { final boolean cancelChild = resetCancelNextUpFlag(target.child) || intercepted; if (dispatchTransformedTouchEvent(ev, cancelChild, target.child, target.pointerIdBits)) { handled = true; } if (cancelChild) { if (predecessor == null) { mFirstTouchTarget = next; } else { predecessor.next = next; } target.recycle(); target = next; continue; } } predecessor = target; target = next; } } // Update list of touch targets for pointer up or cancel, if needed. if (canceled || actionMasked == MotionEvent.ACTION_UP || actionMasked == MotionEvent.ACTION_HOVER_MOVE) { resetTouchState(); } else if (split && actionMasked == MotionEvent.ACTION_POINTER_UP) { final int actionIndex = ev.getActionIndex(); final int idBitsToRemove = 1 << ev.getPointerId(actionIndex); removePointersFromTouchTargets(idBitsToRemove); } } if (!handled && mInputEventConsistencyVerifier != null) { mInputEventConsistencyVerifier.onUnhandledEvent(ev, 1); } return handled; }同样源码好长,我们只看核心:
第46行我们看到if判断的条件是只要canceled和intercepted都为false的话,就会执行if语句块的内容,而intercepted的值正是前面我们通过onInterceptTouchEvent方法返回的值,那么我们有理由相信按钮的点击事件肯定是在这个if语句块中执行的,因为前面我们将onInterceptTouchEvent的返回值改为true之后,if不会执行其语句块,也就意味着直接屏蔽了按钮点击事件了,在if语句块中经过层层计算最后到达第85行执行了dispatchTransformedTouchEvent方法,这个方法也属于ViewGroup,在这个方法里面肯定会出现调用View的dispatchTouchEvent方法,我们可以看看dispatchTransformedTouchEvent的源码:
private boolean dispatchTransformedTouchEvent(MotionEvent event, boolean cancel, View child, int desiredPointerIdBits) { final boolean handled; // Canceling motions is a special case. We don't need to perform any transformations // or filtering. The important part is the action, not the contents. final int oldAction = event.getAction(); if (cancel || oldAction == MotionEvent.ACTION_CANCEL) { event.setAction(MotionEvent.ACTION_CANCEL); if (child == null) { handled = super.dispatchTouchEvent(event); } else { handled = child.dispatchTouchEvent(event); } event.setAction(oldAction); return handled; } // Calculate the number of pointers to deliver. final int oldPointerIdBits = event.getPointerIdBits(); final int newPointerIdBits = oldPointerIdBits & desiredPointerIdBits; // If for some reason we ended up in an inconsistent state where it looks like we // might produce a motion event with no pointers in it, then drop the event. if (newPointerIdBits == 0) { return false; } // If the number of pointers is the same and we don't need to perform any fancy // irreversible transformations, then we can reuse the motion event for this // dispatch as long as we are careful to revert any changes we make. // Otherwise we need to make a copy. final MotionEvent transformedEvent; if (newPointerIdBits == oldPointerIdBits) { if (child == null || child.hasIdentityMatrix()) { if (child == null) { handled = super.dispatchTouchEvent(event); } else { final float offsetX = mScrollX - child.mLeft; final float offsetY = mScrollY - child.mTop; event.offsetLocation(offsetX, offsetY); handled = child.dispatchTouchEvent(event); event.offsetLocation(-offsetX, -offsetY); } return handled; } transformedEvent = MotionEvent.obtain(event); } else { transformedEvent = event.split(newPointerIdBits); } // Perform any necessary transformations and dispatch. if (child == null) { handled = super.dispatchTouchEvent(transformedEvent); } else { final float offsetX = mScrollX - child.mLeft; final float offsetY = mScrollY - child.mTop; transformedEvent.offsetLocation(offsetX, offsetY); if (! child.hasIdentityMatrix()) { transformedEvent.transform(child.getInverseMatrix()); } handled = child.dispatchTouchEvent(transformedEvent); } // Done. transformedEvent.recycle(); return handled; }同样挺长的,我们只看重点,在第11行、13行、37行、43行、56行、65行可能会执行不同判断条件下的View的dispatchTouchEvent方法,但是不管怎么说这个方法是从ViewGroup方法里面的 dispatchTouchEvent调用的,接下来的事件分发就是最开始我们介绍的View的事件分发过程啦,至此整个事件分发过程介绍结束!
总结一下整个事件分发流程是这样子的:
ViewGroup(所有布局的父类)通过调用自己的dispatchTouchEvent方法,将事件传递给自己里面的View,View自己调用自己的dispatchTouchEvent方法来进行事件处理,细节方面上面已经总结过啦!