- 转的网络资料
hemmingway
DeepLearning(深度学习):ufldl的2个教程(这个没得说,入门绝对的好教程,Ng的,逻辑清晰有练习):一ufldl的2个教程(这个没得说,入门绝对的好教程,Ng的,逻辑清晰有练习):二Bengio团队的deeplearning教程,用的theano库,主要是rbm系列,搞python的可以参考,很不错。deeplearning.net主页,里面包含的信息量非常多,有software,
- 神经网络常用的训练方式,神经网络是怎么训练的
小六oO
智能写作神经网络机器学习深度学习
深度神经网络是如何训练的?Coursera的Ng机器学习,UFLDL都看过。没记错的话Ng的机器学习里是直接给出公式了,虽然你可能知道如何求解,但是即使不知道完成作业也不是问题,只要照着公式写就行。反正我当时看的时候心里并没能比较清楚的明白。我觉得想了解深度学习UFLDL教程-Ufldl是不错的。有习题,做完的话确实会对深度学习有更加深刻的理解,但是总还不是很清晰。后来看了LiFeiFei的Sta
- 反向传播是怎么回事?详细教程2019-05-22
loveevol
反向传播的详细推导一文弄懂神经网络中的反向传播法——BackPropagation最近在看深度学习的东西,一开始看的吴恩达的UFLDL教程,有中文版就直接看了,后来发现有些地方总是不是很明确,又去看英文版,然后又找了些资料看,才发现,中文版的译者在翻译的时候会对省略的公式推导过程进行补充,但是补充的又是错的,难怪觉得有问题。反向传播法其实是神经网络的基础了,但是很多人在学的时候总是会遇到一些问题,
- UFLDL新版教程与编程练习(六):Multi-Layer Neural Network(多层神经网络)
赖子啊
UFLDL是吴恩达团队编写的较早的一门深度学习入门,里面理论加上练习的节奏非常好,每次都想快点看完理论去动手编写练习,因为他帮你打好了整个代码框架,也有详细的注释,所以我们只要实现一点核心的代码编写工作就行了,上手快!我这里找不到新版对应这块的中文翻译了,-_-,趁早写一下,否则又没感觉了!第六节是:Multi-LayerNeuralNetwork(多层神经网络)多层神经网络,其实讲的就是全连接层
- git使用指令集
lxlchick
gitcommit-m'第一次修改'
[email protected]:lxl-2404/UFLDL_Python.gitgitRemoteRepository或者gitclonehttps://github.com/lxl-2404/UFLDL_Python.gitgitRemoteRepository最后的‘gitRemoteRepository’是给本地分支起的名字,新建的仓库文件
- 数据预处理之数据归一化
sunny冰青
机器学习算法Matlab算法机器学习数据预处理
转载来自ufldl.stanford.edu/wiki/index.php/数据预处理一、简单缩放分为:最大值缩放和均值缩放在简单缩放中,我们的目的是通过对数据的每一个维度的值进行重新调节(这些维度可能是相互独立的),使得最终的数据向量落在[0,1]或[−1,1]的区间内(根据数据情况而定)。例子:在处理自然图像时,我们获得的像素值在[0,255]区间中,常用的处理是将这些像素值除以255,使它们
- 机器学习
_铁憨憨
DeepLearning(深度学习):ufldl的2个教程(这个没得说,入门绝对的好教程,Ng的,逻辑清晰有练习):一ufldl的2个教程(这个没得说,入门绝对的好教程,Ng的,逻辑清晰有练习):二Bengio团队的deeplearning教程,用的theano库,主要是rbm系列,搞python的可以参考,很不错。deeplearning.net主页,里面包含的信息量非常多,有software,
- softmax
有花落蝶
https://www.zhihu.com/question/41252833http://ufldl.stanford.edu/wiki/index.php/Softmax%E5%9B%9E%E5%BD%92屏幕快照2018-04-08下午11.26.14.png其中p为真实分布,q非真实分布。(q越接近p交叉熵的值越低)在softmax分类算法中,使用交叉熵来进行样本预测(交叉熵越低,样本预测
- 本人常用资源整理(ing...)
weixin_34085658
DeepLearning(深度学习):ufldl的2个教程(这个没得说,入门绝对的好教程,Ng的,逻辑清晰有练习):一ufldl的2个教程(这个没得说,入门绝对的好教程,Ng的,逻辑清晰有练习):二Bengio团队的deeplearning教程,用的theano库,主要是rbm系列,搞python的可以参考,很不错。deeplearning.net主页,里面包含的信息量非常多,有software,
- 深度学习 Deep Learning UFLDL 最新Tutorial 学习笔记 5:Softmax Regression
songrotek
DeepLearningdeeplearningmachinelearningmatlab深度学习gradient
SoftmaxRegressionTutorial地址:http://ufldl.stanford.edu/tutorial/supervised/SoftmaxRegression/从本节开始,难度开始加大了,我将更详细地解释一下这个Tutorial。1SoftmaxRegression介绍前面我们已经知道了LogisticRegression,简单的说就判断一个样本属于1或者0,在应用中比如手
- 深度学习 Deep Learning UFLDL 最新Tutorial 学习笔记 3:Vectorization
songrotek
DeepLearningmachinelearning深度学习UFLDLdeeplearning
1Vectorization简述Vectorization翻译过来就是向量化,各简单的理解就是实现矩阵计算。为什么MATLAB叫MATLAB?大概就是MatrixLab,最根本的区别于其他通用语言的地方就是MATLAB可以用最直观的方式实现矩阵运算,MATLAB的变量都可以是矩阵。通过Vectorization,我们可以将代码变得极其简洁,虽然简洁带来的问题就是其他人看你代码就需要研究一番了。但任
- 深度学习 Deep Learning UFLDL 最新 Tutorial 学习笔记 1:Linear Regression
aofan9566
1前言AndrewNg的UFLDL在2014年9月底更新了。对于開始研究DeepLearning的童鞋们来说这真的是极大的好消息!新的Tutorial相比旧的Tutorial添加了ConvolutionalNeuralNetwork的内容。了解的童鞋都知道CNN在ComputerVision的重大影响。而且从新编排了内容及exercises。新的UFLDL网址为:http://ufldl.stan
- 机器学习--神经网络算法系列--BackPropagation算法
日有所进
机器学习机器学习算法神经网络
一文弄懂神经网络中的反向传播法——BackPropagation最近在看深度学习的东西,一开始看的吴恩达的UFLDL教程,有中文版就直接看了,后来发现有些地方总是不是很明确,又去看英文版,然后又找了些资料看,才发现,中文版的译者在翻译的时候会对省略的公式推导过程进行补充,但是补充的又是错的,难怪觉得有问题。反向传播法其实是神经网络的基础了,但是很多人在学的时候总是会遇到一些问题,或者看到大篇的公式
- 神经网络训练的一般步骤,神经网络的训练与测试
aifans_bert
神经网络神经网络深度学习机器学习dnn
深度神经网络是如何训练的?Coursera的Ng机器学习,UFLDL都看过。没记错的话Ng的机器学习里是直接给出公式了,虽然你可能知道如何求解,但是即使不知道完成作业也不是问题,只要照着公式写就行。反正我当时看的时候心里并没能比较清楚的明白。我觉得想了解深度学习UFLDL教程-Ufldl是不错的。有习题,做完的话确实会对深度学习有更加深刻的理解,但是总还不是很清晰。后来看了LiFeiFei的Sta
- UFLDL教程(四)之Softmax回归
weixin_30509393
数据结构与算法人工智能
关于AndrewNg的machinelearning课程中,有一章专门讲解逻辑回归(Logistic回归),具体课程笔记见另一篇文章。下面,对Logistic回归做一个简单的小结:给定一个待分类样本x,利用Logistic回归模型判断该输入样本的类别,需要做的就是如下两步:①计算逻辑回归假设函数的取值hθ(x),其中n是样本的特征维度②如果hθ(x)>=0.5,则x输入正类,否则,x属于负类或者直
- 深度神经网络的训练过程,深度神经网络训练方法
普通网友
神经网络
深度神经网络是如何训练的?Coursera的Ng机器学习,UFLDL都看过。没记错的话Ng的机器学习里是直接给出公式了,虽然你可能知道如何求解,但是即使不知道完成作业也不是问题,只要照着公式写就行。反正我当时看的时候心里并没能比较清楚的明白。我觉得想了解深度学习UFLDL教程-Ufldl是不错的。有习题,做完的话确实会对深度学习有更加深刻的理解,但是总还不是很清晰。后来看了LiFeiFei的Sta
- 训练神经网络的详细步骤,神经网络训练过程图解
普通网友
神经网络深度学习机器学习
深度神经网络是如何训练的?Coursera的Ng机器学习,UFLDL都看过。没记错的话Ng的机器学习里是直接给出公式了,虽然你可能知道如何求解,但是即使不知道完成作业也不是问题,只要照着公式写就行。反正我当时看的时候心里并没能比较清楚的明白。我觉得想了解深度学习UFLDL教程-Ufldl是不错的。有习题,做完的话确实会对深度学习有更加深刻的理解,但是总还不是很清晰。后来看了LiFeiFei的Sta
- BP神经网络的实现详解
CaiziLee
MachineLearning神经网络
本文主要详解BP神经网络编程实现,旨在一步一步解析BP神经网络细节,希望能形象明了的阐述BP神经网络,实现原理源自于斯坦福UFLDL教程,原理公式推导不再赘述,但会有些说明,本文程序由C++11实现,矩阵计算基于Eigen3(不熟悉的可以去网上搜索Eigen的使用方法,本文不做叙述),那么我们开始吧!为了给算法列一个提纲,首先截一个UFLDL教程上关于BP算法的步骤,做个引导:下面是神经网络一次批
- 机器学习 网站大全--陆续更新中
lizz2276
机器学习人工智能
1、neuralnetworksanddeeplearning.com2、deeplearningbook.org3、ufldl.Stanford.edu/tutorial/4、Coursera.org/learn/machine-learning/resources/NrY2G5、MachineLearningCrashCourse|GoogleDevelopers6、AnalyticsVidh
- 深度学习参考资料
xiaogss
深度学习深度学习
DeepLearning(深度学习)ufldl的2个教程(这个没得说,入门绝对的好教程,Ng的,逻辑清晰有练习):一ufldl的2个教程(这个没得说,入门绝对的好教程,Ng的,逻辑清晰有练习):二Bengio团队的deeplearning教程,用的theano库,主要是rbm系列,搞python的可以参考,很不错。deeplearning.net主页,里面包含的信息量非常多,有software,r
- 深度学习资料链接整理
mydear_11000
DeepLearning(深度学习)ufldl的2个教程(这个没得说,入门绝对的好教程,Ng的,逻辑清晰有练习):一ufldl的2个教程(这个没得说,入门绝对的好教程,Ng的,逻辑清晰有练习):二Bengio团队的deeplearning教程,用的theano库,主要是rbm系列,搞python的可以参考,很不错。deeplearning.net主页,里面包含的信息量非常多,有software,r
- lenet5卷积神经网络过程_卷积神经网络(一):LeNet5的基本结构
有木桑
lenet5卷积神经网络过程
在机器视觉,图像处理领域,卷积神经网络取得了巨大的成功。本文将参考UFLDL和DEEPLEARNING.NET的教程,结合自己的理解,梳理一下卷积神经网络的构成以及其BP算法的求解。虽然利用theano可以方便的实现LeNet5,但是不利于学习和理解卷积神经网络,所以最后会自己动手用Python实现一个简单的LeNet5,并尝试利用python的PyCUDA库进行加速。首先看LeNet5的结构,如
- 【深度学习——ANN】一文读懂BP神经网络
Lily_9
深度学习BP神经网络
转自一位懂生活的女神的博客园的文章。http://www.cnblogs.com/charlotte77/p/5629865.html最近在看深度学习的东西,一开始看的吴恩达的UFLDL教程,有中文版就直接看了,后来发现有些地方总是不是很明确,又去看英文版,然后又找了些资料看,才发现,中文版的译者在翻译的时候会对省略的公式推导过程进行补充,但是补充的又是错的,难怪觉得有问题。反向传播法其实是神经网
- CV&DL&ML等资源整理
magic_andy
DeepLearningPatternRecognitionMachineLearning资料整理
原文地址:http://www.cnblogs.com/tornadomeetDeepLearning(深度学习):ufldl的2个教程(这个没得说,入门绝对的好教程,Ng的,逻辑清晰有练习):一ufldl的2个教程(这个没得说,入门绝对的好教程,Ng的,逻辑清晰有练习):二Bengio团队的deeplearning教程,用的theano库,主要是rbm系列,搞python的可以参考,很不错。de
- Machine Learning 网络资源
jianwushuang
其他
转自:http://www.cnblogs.com/tornadomeet/archive/2012/05/24/2515980.html本人常用资源整理(ing...)DeepLearning(深度学习):ufldl的2个教程(这个没得说,入门绝对的好教程,Ng的,逻辑清晰有练习):一ufldl的2个教程(这个没得说,入门绝对的好教程,Ng的,逻辑清晰有练习):二Bengio团队的deeplea
- 深度学习资料链接整理(囊括ML,DL,CV团队,网站,优秀博客,实验室等大堆资料集)
ciky奇
深度学习/机器学习计算机视觉DLMLCV
下面内容是转自:https://blog.csdn.net/mydear_11000/article/details/50864405要些牛逼的话,估计这些得看完了就成仙了!DeepLearning(深度学习)ufldl的2个教程(这个没得说,入门绝对的好教程,Ng的,逻辑清晰有练习):一ufldl的2个教程(这个没得说,入门绝对的好教程,Ng的,逻辑清晰有练习):二Bengio团队的deeple
- 深度学习资料整理(压缩感知)
曼陀罗彼岸花
深度学习
近这两年里deeplearning技术在图像识别和跟踪等方面有很大的突破,是一大研究热点,里面涉及的数学理论和应用技术很值得深入研究,这系列博客总结了深度学习的博客,原理等资料,供大家学习讨论。一、深度学习资料整理(博客类)二、深度学习资料整理(文章类)三、深度学习资料整理(软件资源)四、深度学习原理(关键技术总结,斯坦福大学UFLDL教程)五、深度学习资料整理(深度神经网络理解)六、深度学习资料
- 机器学习、深度学习、数据挖掘各种资源整理
GarfieldEr007
机器学习机器学习深度学习数据挖掘资源整理
DeepLearning(深度学习):ufldl的2个教程(这个没得说,入门绝对的好教程,Ng的,逻辑清晰有练习):一ufldl的2个教程(这个没得说,入门绝对的好教程,Ng的,逻辑清晰有练习):二Bengio团队的deeplearning教程,用的theano库,主要是rbm系列,搞python的可以参考,很不错。deeplearning.net主页,里面包含的信息量非常多,有software,
- AI-图书馆(一)
ailib
知识整理库深度学习计算机视觉自然语言处理人工智能-神经网络算法
本文章有转载自其它博文,也有自己发现的新库添加进来的,如果发现有新的库,可以推荐我加进来转自:http://blog.csdn.net/sherry_gp/article/details/51436627DeepLearning(深度学习):ufldl的2个教程(这个没得说,入门绝对的好教程,Ng的,逻辑清晰有练习):一ufldl的2个教程(这个没得说,入门绝对的好教程,Ng的,逻辑清晰有练习):
- cnn输出每一类的概率matlab,[Deep Learning]两层CNN的MATLAB实现
楚予微茫
想自己动手写一个CNN很久了,论文和代码之间的差距有一个银河系那么大。在实现两层的CNN之前,首先实现了UFLDL中与CNN有关的作业。然后参考它的代码搭建了一个一层的CNN。最后实现了一个两层的CNN,码代码花了一天,调试花了5天,我也是醉了。这里记录一下通过代码对CNN加深的理解。首先,dataset是MNIST。这里层的概念是指convolution+pooling,有些地方会把convol
- jQuery 键盘事件keydown ,keypress ,keyup介绍
107x
jsjquerykeydownkeypresskeyup
本文章总结了下些关于jQuery 键盘事件keydown ,keypress ,keyup介绍,有需要了解的朋友可参考。
一、首先需要知道的是: 1、keydown() keydown事件会在键盘按下时触发. 2、keyup() 代码如下 复制代码
$('input').keyup(funciton(){  
- AngularJS中的Promise
bijian1013
JavaScriptAngularJSPromise
一.Promise
Promise是一个接口,它用来处理的对象具有这样的特点:在未来某一时刻(主要是异步调用)会从服务端返回或者被填充属性。其核心是,promise是一个带有then()函数的对象。
为了展示它的优点,下面来看一个例子,其中需要获取用户当前的配置文件:
var cu
- c++ 用数组实现栈类
CrazyMizzz
数据结构C++
#include<iostream>
#include<cassert>
using namespace std;
template<class T, int SIZE = 50>
class Stack{
private:
T list[SIZE];//数组存放栈的元素
int top;//栈顶位置
public:
Stack(
- java和c语言的雷同
麦田的设计者
java递归scaner
软件启动时的初始化代码,加载用户信息2015年5月27号
从头学java二
1、语言的三种基本结构:顺序、选择、循环。废话不多说,需要指出一下几点:
a、return语句的功能除了作为函数返回值以外,还起到结束本函数的功能,return后的语句
不会再继续执行。
b、for循环相比于whi
- LINUX环境并发服务器的三种实现模型
被触发
linux
服务器设计技术有很多,按使用的协议来分有TCP服务器和UDP服务器。按处理方式来分有循环服务器和并发服务器。
1 循环服务器与并发服务器模型
在网络程序里面,一般来说都是许多客户对应一个服务器,为了处理客户的请求,对服务端的程序就提出了特殊的要求。
目前最常用的服务器模型有:
·循环服务器:服务器在同一时刻只能响应一个客户端的请求
·并发服务器:服
- Oracle数据库查询指令
肆无忌惮_
oracle数据库
20140920
单表查询
-- 查询************************************************************************************************************
-- 使用scott用户登录
-- 查看emp表
desc emp
- ext右下角浮动窗口
知了ing
JavaScriptext
第一种
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/
- 浅谈REDIS数据库的键值设计
矮蛋蛋
redis
http://www.cnblogs.com/aidandan/
原文地址:http://www.hoterran.info/redis_kv_design
丰富的数据结构使得redis的设计非常的有趣。不像关系型数据库那样,DEV和DBA需要深度沟通,review每行sql语句,也不像memcached那样,不需要DBA的参与。redis的DBA需要熟悉数据结构,并能了解使用场景。
- maven编译可执行jar包
alleni123
maven
http://stackoverflow.com/questions/574594/how-can-i-create-an-executable-jar-with-dependencies-using-maven
<build>
<plugins>
<plugin>
<artifactId>maven-asse
- 人力资源在现代企业中的作用
百合不是茶
HR 企业管理
//人力资源在在企业中的作用人力资源为什么会存在,人力资源究竟是干什么的 人力资源管理是对管理模式一次大的创新,人力资源兴起的原因有以下点: 工业时代的国际化竞争,现代市场的风险管控等等。所以人力资源 在现代经济竞争中的优势明显的存在,人力资源在集团类公司中存在着 明显的优势(鸿海集团),有一次笔者亲自去体验过红海集团的招聘,只 知道人力资源是管理企业招聘的 当时我被招聘上了,当时给我们培训 的人
- Linux自启动设置详解
bijian1013
linux
linux有自己一套完整的启动体系,抓住了linux启动的脉络,linux的启动过程将不再神秘。
阅读之前建议先看一下附图。
本文中假设inittab中设置的init tree为:
/etc/rc.d/rc0.d
/etc/rc.d/rc1.d
/etc/rc.d/rc2.d
/etc/rc.d/rc3.d
/etc/rc.d/rc4.d
/etc/rc.d/rc5.d
/etc
- Spring Aop Schema实现
bijian1013
javaspringAOP
本例使用的是Spring2.5
1.Aop配置文件spring-aop.xml
<?xml version="1.0" encoding="UTF-8"?>
<beans
xmlns="http://www.springframework.org/schema/beans"
xmln
- 【Gson七】Gson预定义类型适配器
bit1129
gson
Gson提供了丰富的预定义类型适配器,在对象和JSON串之间进行序列化和反序列化时,指定对象和字符串之间的转换方式,
DateTypeAdapter
public final class DateTypeAdapter extends TypeAdapter<Date> {
public static final TypeAdapterFacto
- 【Spark八十八】Spark Streaming累加器操作(updateStateByKey)
bit1129
update
在实时计算的实际应用中,有时除了需要关心一个时间间隔内的数据,有时还可能会对整个实时计算的所有时间间隔内产生的相关数据进行统计。
比如: 对Nginx的access.log实时监控请求404时,有时除了需要统计某个时间间隔内出现的次数,有时还需要统计一整天出现了多少次404,也就是说404监控横跨多个时间间隔。
Spark Streaming的解决方案是累加器,工作原理是,定义
- linux系统下通过shell脚本快速找到哪个进程在写文件
ronin47
一个文件正在被进程写 我想查看这个进程 文件一直在增大 找不到谁在写 使用lsof也没找到
这个问题挺有普遍性的,解决方法应该很多,这里我给大家提个比较直观的方法。
linux下每个文件都会在某个块设备上存放,当然也都有相应的inode, 那么透过vfs.write我们就可以知道谁在不停的写入特定的设备上的inode。
幸运的是systemtap的安装包里带了inodewatch.stp,位
- java-两种方法求第一个最长的可重复子串
bylijinnan
java算法
import java.util.Arrays;
import java.util.Collections;
import java.util.List;
public class MaxPrefix {
public static void main(String[] args) {
String str="abbdabcdabcx";
- Netty源码学习-ServerBootstrap启动及事件处理过程
bylijinnan
javanetty
Netty是采用了Reactor模式的多线程版本,建议先看下面这篇文章了解一下Reactor模式:
http://bylijinnan.iteye.com/blog/1992325
Netty的启动及事件处理的流程,基本上是按照上面这篇文章来走的
文章里面提到的操作,每一步都能在Netty里面找到对应的代码
其中Reactor里面的Acceptor就对应Netty的ServerBo
- servelt filter listener 的生命周期
cngolon
filterlistenerservelt生命周期
1. servlet 当第一次请求一个servlet资源时,servlet容器创建这个servlet实例,并调用他的 init(ServletConfig config)做一些初始化的工作,然后调用它的service方法处理请求。当第二次请求这个servlet资源时,servlet容器就不在创建实例,而是直接调用它的service方法处理请求,也就是说
- jmpopups获取input元素值
ctrain
JavaScript
jmpopups 获取弹出层form表单
首先,我有一个div,里面包含了一个表单,默认是隐藏的,使用jmpopups时,会弹出这个隐藏的div,其实jmpopups是将我们的代码生成一份拷贝。
当我直接获取这个form表单中的文本框时,使用方法:$('#form input[name=test1]').val();这样是获取不到的。
我们必须到jmpopups生成的代码中去查找这个值,$(
- vi查找替换命令详解
daizj
linux正则表达式替换查找vim
一、查找
查找命令
/pattern<Enter> :向下查找pattern匹配字符串
?pattern<Enter>:向上查找pattern匹配字符串
使用了查找命令之后,使用如下两个键快速查找:
n:按照同一方向继续查找
N:按照反方向查找
字符串匹配
pattern是需要匹配的字符串,例如:
1: /abc<En
- 对网站中的js,css文件进行打包
dcj3sjt126com
PHP打包
一,为什么要用smarty进行打包
apache中也有给js,css这样的静态文件进行打包压缩的模块,但是本文所说的不是以这种方式进行的打包,而是和smarty结合的方式来把网站中的js,css文件进行打包。
为什么要进行打包呢,主要目的是为了合理的管理自己的代码 。现在有好多网站,你查看一下网站的源码的话,你会发现网站的头部有大量的JS文件和CSS文件,网站的尾部也有可能有大量的J
- php Yii: 出现undefined offset 或者 undefined index解决方案
dcj3sjt126com
undefined
在开发Yii 时,在程序中定义了如下方式:
if($this->menuoption[2] === 'test'),那么在运行程序时会报:undefined offset:2,这样的错误主要是由于php.ini 里的错误等级太高了,在windows下错误等级
- linux 文件格式(1) sed工具
eksliang
linuxlinux sed工具sed工具linux sed详解
转载请出自出处:
http://eksliang.iteye.com/blog/2106082
简介
sed 是一种在线编辑器,它一次处理一行内容。处理时,把当前处理的行存储在临时缓冲区中,称为“模式空间”(pattern space),接着用sed命令处理缓冲区中的内容,处理完成后,把缓冲区的内容送往屏幕。接着处理下一行,这样不断重复,直到文件末尾
- Android应用程序获取系统权限
gqdy365
android
引用
如何使Android应用程序获取系统权限
第一个方法简单点,不过需要在Android系统源码的环境下用make来编译:
1. 在应用程序的AndroidManifest.xml中的manifest节点
- HoverTree开发日志之验证码
hvt
.netC#asp.nethovertreewebform
HoverTree是一个ASP.NET的开源CMS,目前包含文章系统,图库和留言板功能。代码完全开放,文章内容页生成了静态的HTM页面,留言板提供留言审核功能,文章可以发布HTML源代码,图片上传同时生成高品质缩略图。推出之后得到许多网友的支持,再此表示感谢!留言板不断收到许多有益留言,但同时也有不少广告,因此决定在提交留言页面增加验证码功能。ASP.NET验证码在网上找,如果不是很多,就是特别多
- JSON API:用 JSON 构建 API 的标准指南中文版
justjavac
json
译文地址:https://github.com/justjavac/json-api-zh_CN
如果你和你的团队曾经争论过使用什么方式构建合理 JSON 响应格式, 那么 JSON API 就是你的 anti-bikeshedding 武器。
通过遵循共同的约定,可以提高开发效率,利用更普遍的工具,可以是你更加专注于开发重点:你的程序。
基于 JSON API 的客户端还能够充分利用缓存,
- 数据结构随记_2
lx.asymmetric
数据结构笔记
第三章 栈与队列
一.简答题
1. 在一个循环队列中,队首指针指向队首元素的 前一个 位置。
2.在具有n个单元的循环队列中,队满时共有 n-1 个元素。
3. 向栈中压入元素的操作是先 移动栈顶指针&n
- Linux下的监控工具dstat
网络接口
linux
1) 工具说明dstat是一个用来替换 vmstat,iostat netstat,nfsstat和ifstat这些命令的工具, 是一个全能系统信息统计工具. 与sysstat相比, dstat拥有一个彩色的界面, 在手动观察性能状况时, 数据比较显眼容易观察; 而且dstat支持即时刷新, 譬如输入dstat 3, 即每三秒收集一次, 但最新的数据都会每秒刷新显示. 和sysstat相同的是,
- C 语言初级入门--二维数组和指针
1140566087
二维数组c/c++指针
/*
二维数组的定义和二维数组元素的引用
二维数组的定义:
当数组中的每个元素带有两个下标时,称这样的数组为二维数组;
(逻辑上把数组看成一个具有行和列的表格或一个矩阵);
语法:
类型名 数组名[常量表达式1][常量表达式2]
二维数组的引用:
引用二维数组元素时必须带有两个下标,引用形式如下:
例如:
int a[3][4]; 引用:
- 10点睛Spring4.1-Application Event
wiselyman
application
10.1 Application Event
Spring使用Application Event给bean之间的消息通讯提供了手段
应按照如下部分实现bean之间的消息通讯
继承ApplicationEvent类实现自己的事件
实现继承ApplicationListener接口实现监听事件
使用ApplicationContext发布消息