第六讲 分组的背包问题 HDU 1712ACboy needs your help

ACboy needs your help

Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 5618    Accepted Submission(s): 3063


Problem Description
ACboy has N courses this term, and he plans to spend at most M days on study.Of course,the profit he will gain from different course depending on the days he spend on it.How to arrange the M days for the N courses to maximize the profit?
 

Input
The input consists of multiple data sets. A data set starts with a line containing two positive integers N and M, N is the number of courses, M is the days ACboy has.
Next follow a matrix A[i][j], (1<=i<=N<=100,1<=j<=M<=100).A[i][j] indicates if ACboy spend j days on ith course he will get profit of value A[i][j].
N = 0 and M = 0 ends the input.
 

Output
For each data set, your program should output a line which contains the number of the max profit ACboy will gain.
 

Sample Input
   
   
   
   
2 2 1 2 1 3 2 2 2 1 2 1 2 3 3 2 1 3 2 1 0 0
 

Sample Output
   
   
   
   
3 4 6
 

问题

N件物品和一个容量为V的背包。第i件物品的费用是c[i],价值是w[i]。这些物品被划分为若干组,每组中的物品互相冲突,最多选一件。求解将哪些物品装入背包可使这些物品的费用总和不超过背包容量,且价值总和最大。

算法

这个问题变成了每组物品有若干种策略:是选择本组的某一件,还是一件都不选。也就是说设f[k][v]表示前k组物品花费费用v能取得的最大权值,则有:

f[k][v]=max{f[k-1][v],f[k-1][v-c[i]]+w[i]|物品i属于组k}

使用一维数组的伪代码如下:

for 所有的组k
    for v=V..0
        for 所有的i属于组k
            f[v]=max{f[v],f[v-c[i]]+w[i]}
代码如下:

#include<iostream>//c++
#include<cmath>//数学公式
#include<cstdlib>//malloc
#include<cstring>
#include<string>
#include<cstdio>//输入输出
#include<algorithm>//快排
#include<queue>//队列
#include<functional>//优先队列
#include<stack>//栈
#include<vector>//容器
#include<map>//地图  if continue
typedef long long ll;
const  int N=105;
using namespace std;
int dp[N],value[N][N];
int main()
{
//    freopen("C:\\Users\\ch\\Desktop\\1.txt","r",stdin);
	//freopen("C:\\Users\\lenovo\\Desktop\\2.txt","w",stdout);
	int i,j,k;
	int v,n,m;
	while(cin>>m>>n,n|m)
    {
        for(i=0;i<m;i++)
        for(j=1;j<=n;j++)    scanf("%d",&value[i][j]);
        memset(dp,0,sizeof(dp));
        for(int i=0;i<m;i++)
        for(int j=n;j>=1;j--)
        for(int k=1;k<=j;k++)
            dp[j]=max(dp[j],dp[j-k]+value[i][k]);
        cout<<dp[n]<<endl;
    }
    return 0;
}


你可能感兴趣的:(动态规划,ACM,HDU,分组背包)