题目链接:http://codeforces.com/problemset/problem/657/B
Limak is a little polar bear. He doesn't have many toys and thus he often plays with polynomials.
He considers a polynomial valid if its degree is n and its coefficients are integers not exceeding k by the absolute value. More formally:
Let a0, a1, ..., an denote the coefficients, so . Then, a polynomial P(x) is valid if all the following conditions are satisfied:
Limak has recently got a valid polynomial P with coefficients a0, a1, a2, ..., an. He noticed that P(2) ≠ 0 and he wants to change it. He is going to change one coefficient to get a valid polynomial Q of degree n that Q(2) = 0. Count the number of ways to do so. You should count two ways as a distinct if coefficients of target polynoms differ.
The first line contains two integers n and k (1 ≤ n ≤ 200 000, 1 ≤ k ≤ 109) — the degree of the polynomial and the limit for absolute values of coefficients.
The second line contains n + 1 integers a0, a1, ..., an (|ai| ≤ k, an ≠ 0) — describing a valid polynomial . It's guaranteed that P(2) ≠ 0.
Print the number of ways to change one coefficient to get a valid polynomial Q that Q(2) = 0.
3 1000000000
10 -9 -3 5
3
3 12
10 -9 -3 5
2
2 20
14 -7 19
0
In the first sample, we are given a polynomial P(x) = 10 - 9x - 3x2 + 5x3.
Limak can change one coefficient in three ways:
In the second sample, we are given the same polynomial. This time though, k is equal to 12 instead of 109. Two first of ways listed above are still valid but in the third way we would get |a1| > k what is not allowed. Thus, the answer is 2 this time.
思路:既然让x等于2,那就好办了。像处理二进制一样,将所有系数变换到最高项系数那里。然后从最高项系数开始,按权求和,一直到不大于第一个系数不为0的项再进行判断。为什么呢?因为如果在其之后,将它的系数往最高项移动,对低项没影响,而低项有不为0的项,这样是无解的。
直接附上AC代码:
#include <bits/stdc++.h> using namespace std; typedef long long ll; const int maxn = 200005; ll num[maxn], t[maxn]; int n, k; int main(){ #ifdef LOCAL //freopen("input.txt", "r", stdin); //freopen("output.txt", "w", stdout); #endif ios::sync_with_stdio(false); cin.tie(0); cin >> n >> k; for (int i=0; i<=n; ++i){ cin >> num[i]; t[i] = num[i]; } for (int i=1; i<=n; ++i){<span style="white-space:pre"> </span>// 低项系数高项移 num[i] += num[i-1]/2ll; num[i-1] %= 2ll; } int flag = 0; for (int i=0; i<=n; ++i)<span style="white-space:pre"> </span>// 找移动之后的第一个不为零的项 if (num[i] != 0ll){ flag = i; break; } ll sum = 0ll; int ans = 0; for (int i=n; i>=0; --i){ sum = sum*2ll+num[i];<span style="white-space:pre"> </span>// 按权求和 if (abs(sum) > 2e9)<span style="white-space:pre"> </span>// 已经不满足系数绝对值条件,再往前更加不满足 break; if (i <= flag){ ll temp = abs(sum-t[i]); if (i==n && temp==0ll)<span style="white-space:pre"> </span>// 满足此条件,说明要使最高项系数为0,不可取 continue; if (temp <= k) ++ans; } } cout << ans << endl; return 0; }