CodeForces 657B Bear and Polynomials

题目链接:http://codeforces.com/problemset/problem/657/B


Bear and Polynomials

time limit per test :2 seconds
memory limit per test :256 megabytes
input: standard input
output: standard output

Limak is a little polar bear. He doesn't have many toys and thus he often plays with polynomials.

He considers a polynomial valid if its degree is n and its coefficients are integers not exceeding k by the absolute value. More formally:

Let a0, a1, ..., an denote the coefficients, so . Then, a polynomial P(x) is valid if all the following conditions are satisfied:

  • ai is integer for every i;
  • |ai| ≤ k for every i;
  • an ≠ 0.

Limak has recently got a valid polynomial P with coefficients a0, a1, a2, ..., an. He noticed that P(2) ≠ 0 and he wants to change it. He is going to change one coefficient to get a valid polynomial Q of degree n that Q(2) = 0. Count the number of ways to do so. You should count two ways as a distinct if coefficients of target polynoms differ.

Input

The first line contains two integers n and k (1 ≤ n ≤ 200 000, 1 ≤ k ≤ 109) — the degree of the polynomial and the limit for absolute values of coefficients.

The second line contains n + 1 integers a0, a1, ..., an (|ai| ≤ k, an ≠ 0) — describing a valid polynomial . It's guaranteed that P(2) ≠ 0.

Output

Print the number of ways to change one coefficient to get a valid polynomial Q that Q(2) = 0.

Examples

Input
3 1000000000
10 -9 -3 5
Output
3
Input
3 12
10 -9 -3 5
Output
2
Input
2 20
14 -7 19
Output
0

Note

In the first sample, we are given a polynomial P(x) = 10 - 9x - 3x2 + 5x3.

Limak can change one coefficient in three ways:

  1. He can set a0 =  - 10. Then he would get Q(x) =  - 10 - 9x - 3x2 + 5x3 and indeed Q(2) =  - 10 - 18 - 12 + 40 = 0.
  2. Or he can set a2 =  - 8. Then Q(x) = 10 - 9x - 8x2 + 5x3 and indeed Q(2) = 10 - 18 - 32 + 40 = 0.
  3. Or he can set a1 =  - 19. Then Q(x) = 10 - 19x - 3x2 + 5x3 and indeed Q(2) = 10 - 38 - 12 + 40 = 0.

In the second sample, we are given the same polynomial. This time though, k is equal to 12 instead of 109. Two first of ways listed above are still valid but in the third way we would get |a1| > k what is not allowed. Thus, the answer is 2 this time.


思路:既然让x等于2,那就好办了。像处理二进制一样,将所有系数变换到最高项系数那里。然后从最高项系数开始,按权求和,一直到不大于第一个系数不为0的项再进行判断。为什么呢?因为如果在其之后,将它的系数往最高项移动,对低项没影响,而低项有不为0的项,这样是无解的。


直接附上AC代码:


#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
const int maxn = 200005;
ll num[maxn], t[maxn];
int n, k;

int main(){
    #ifdef LOCAL
    //freopen("input.txt", "r", stdin);
    //freopen("output.txt", "w", stdout);
    #endif
    ios::sync_with_stdio(false);
    cin.tie(0);
    cin >> n >> k;
    for (int i=0; i<=n; ++i){
		cin >> num[i];
		t[i] = num[i];
    }
    for (int i=1; i<=n; ++i){<span style="white-space:pre">	</span>// 低项系数高项移
		num[i] += num[i-1]/2ll;
		num[i-1] %= 2ll;
    }
    int flag = 0;
    for (int i=0; i<=n; ++i)<span style="white-space:pre">	</span>// 找移动之后的第一个不为零的项
		if (num[i] != 0ll){
			flag = i;
			break;
		}
	ll sum = 0ll;
	int ans = 0;
	for (int i=n; i>=0; --i){
		sum = sum*2ll+num[i];<span style="white-space:pre">	</span>// 按权求和
		if (abs(sum) > 2e9)<span style="white-space:pre">	</span>// 已经不满足系数绝对值条件,再往前更加不满足
			break;
		if (i <= flag){
			ll temp = abs(sum-t[i]);
			if (i==n && temp==0ll)<span style="white-space:pre">	</span>// 满足此条件,说明要使最高项系数为0,不可取
				continue;
			if (temp <= k)
				++ans;
		}
	}
	cout << ans << endl;
    return 0;
}


你可能感兴趣的:(数学,codeforces)