Description
There is a pile of n wooden sticks. The length and weight of each stick are known in advance. The sticks are to be processed by a woodworking machine in one by one fashion. It needs some time, called setup time, for the machine to prepare processing a stick. The setup times are associated with cleaning operations and changing tools and shapes in the machine. The setup times of the woodworking machine are given as follows:
(a) The setup time for the first wooden stick is 1 minute.
(b) Right after processing a stick of length l and weight w , the machine will need no setup time for a stick of length l’ and weight w’ if l<=l’ and w<=w’. Otherwise, it will need 1 minute for setup.
You are to find the minimum setup time to process a given pile of n wooden sticks. For example, if you have five sticks whose pairs of length and weight are (4,9), (5,2), (2,1), (3,5), and (1,4), then the minimum setup time should be 2 minutes since there is a sequence of pairs (1,4), (3,5), (4,9), (2,1), (5,2).
Input
The input consists of T test cases. The number of test cases (T) is given in the first line of the input file. Each test case consists of two lines: The first line has an integer n , 1<=n<=5000, that represents the number of wooden sticks in the test case, and the second line contains n 2 positive integers l1, w1, l2, w2, …, ln, wn, each of magnitude at most 10000 , where li and wi are the length and weight of the i th wooden stick, respectively. The 2n integers are delimited by one or more spaces.
Output
The output should contain the minimum setup time in minutes, one per line.
Sample Input
3
5
4 9 5 2 2 1 3 5 1 4
3
2 2 1 1 2 2
3
1 3 2 2 3 1
Output for the Sample Input
2
1
3
题意大概是锯木桩,每次小于前面开过机的长和厚不用建立,大于的话就得重新发动,发动时间为1,为求最小发动时间。其实就是求最少组的非递减子序列。
第一种动态规划吧,相当于是最长不下降子序列长度问题。嗯,先对l.w升序排,先排长度,长度相等时在按重量的升序排。再求重量的最长下降子序列长度L,即为所求。然而我并不会证。
第二种贪心吧,一边找一边标记找过了。
DP
#include<iostream>
#include<algorithm>
#include<string.h>
#include<stdio.h>
#include<stdlib.h>
#include<vector>
using namespace std;
struct node
{
int l, w;
};
bool cmp(const node& a,const node& b){
if (a.l == b.l){
return a.w < b.w;
}
return a.l < b.l;
}
node sticks[5005];
int main()
{
int T,n;
scanf("%d",&T);
while (T--){
scanf("%d",&n);
memset(sticks,0,sizeof(sticks));
for (int i = 0; i < n; i++){
scanf("%d%d",&sticks[i].l,&sticks[i].w);
}
sort(sticks,sticks+n,cmp);
vector<int> dp(n, 1);
int longest = 1;
for (int i = 1; i < n; i++){
for (int j = 0; j < i; j++){
if (sticks[i].w < sticks[j].w){
dp[i] = max(dp[i],dp[j]+1);
}
}
longest = max(longest,dp[i]);
}
printf("%d\n",longest);
}
return 0;
}
贪心:
#include<iostream>
#include<string.h>
#include<algorithm>
#include<stdio.h>
#include<stdlib.h>
using namespace std;
struct node{
int l, w;
bool flag;
node() :l(0), w(0), flag(false){
}
};
bool cmp(const node& a,const node& b){
if (a.l == b.l){
return a.w < b.w;
}
return a.l < b.l;
}
int main()
{
int T, n;
scanf("%d",&T);
while (T--){
scanf("%d",&n);
node* sticks = new node[n];
for (int i = 0; i < n;i++){
scanf("%d%d",&sticks[i].l,&sticks[i].w);
}
sort(sticks,sticks+n,cmp);
int res=0;
for (int i = 0; i < n; i++){
if (sticks[i].flag){
continue;
}
res++;
int tmp = sticks[i].w;
for (int j = i; j < n; j++){
if (tmp <= sticks[j].w && !sticks[j].flag){
sticks[j].flag = true;
tmp = sticks[j].w;
}
}
}
printf("%d\n",res);
}
return 0;
}