点击打开题目链接
几何基础
#include <cstdio> #include <cmath> #include <iostream> using namespace std; struct Point //定义点 { double x, y; Point(double x = 0, double y = 0) : x(x), y(y) {} //构造函数,方便代码编写 }; typedef Point Vector; //向量是点的一个别名 //重载 +,-,* 运算符 Vector operator + (Vector A, Vector B) //向量+向量=向量 { return Vector(A.x + B.x, A.y + B.y); } Vector operator - (Point A, Point B) //点-点=向量 { return Vector(A.x - B.x, A.y - B.y); } Vector operator * (Vector A, double p) //向量*数=向量 { return Vector(A.x * p, A.y * p); } Vector operator / (Vector A, double p) //向量*数=向量 { return Vector(A.x / p, A.y / p); } //叉积,两向量组成的三角形的有向面积的两倍 double Cross(Vector A, Vector B) { return A.x * B.y - A.y * B.x; } //直线交点,调用前确保两条直线P+tv和Q+tw有唯一交点。当且仅当Cross(v,w)非0 Point GetLineIntersection(Point P, Vector v, Point Q, Vector w) { Vector u = P - Q; double t = Cross(w, u) / Cross(v, w); return P + v * t; } //三角形有向面积的两倍 double Area2(Point A, Point B, Point C) { return Cross(B - A, C - A); } Point getD(Point A, Point B, Point C) { Point D = B + (C - B) / 3; //点D Vector AD = D - A; //线段AD Point E = C + (A - C) / 3; //点E Vector BE = E - B; //线段BE return GetLineIntersection(A, AD, B, BE); //交点P } Point read_point() { Point p; scanf("%lf%lf", &p.x, &p.y); return p; } int main() { int T; Point A, B, C, P, Q, R; scanf("%d", &T); while (T--) { A = read_point(); B = read_point(); C = read_point(); P = getD(A, B, C); Q = getD(B, C, A); R = getD(C, A, B); double ans = fabs(Area2(P, Q, R)) / 2; printf("%.0lf\n", ans); } return 0; }