UVA 11437 Triangle Fun 几何基础

点击打开题目链接

几何基础

#include <cstdio>
#include <cmath>
#include <iostream>
using namespace std;

struct Point        //定义点
{
    double x, y;
    Point(double x = 0, double y = 0) : x(x), y(y) {}    //构造函数,方便代码编写
};

typedef Point Vector;       //向量是点的一个别名
//重载 +,-,* 运算符
Vector operator + (Vector A, Vector B)    //向量+向量=向量
{
    return Vector(A.x + B.x, A.y + B.y);
}

Vector operator - (Point A, Point B)        //点-点=向量
{
    return Vector(A.x - B.x, A.y - B.y);
}

Vector operator * (Vector A, double p)      //向量*数=向量
{
    return Vector(A.x * p, A.y * p);
}

Vector operator / (Vector A, double p)      //向量*数=向量
{
    return Vector(A.x / p, A.y / p);
}
//叉积,两向量组成的三角形的有向面积的两倍
double Cross(Vector A, Vector B)
{
    return A.x * B.y - A.y * B.x;
}
//直线交点,调用前确保两条直线P+tv和Q+tw有唯一交点。当且仅当Cross(v,w)非0
Point GetLineIntersection(Point P, Vector v, Point Q, Vector w)
{
    Vector u = P - Q;
    double t = Cross(w, u) / Cross(v, w);
    return P + v * t;
}
//三角形有向面积的两倍 
double Area2(Point A, Point B, Point C)
{
	return Cross(B - A, C - A);
}

Point getD(Point A, Point B, Point C)
{
    Point D = B + (C - B) / 3;	//点D 
    Vector AD = D - A;			//线段AD 
    
    Point E = C + (A - C) / 3;	//点E 
    Vector BE = E - B;			//线段BE 
    
    return GetLineIntersection(A, AD, B, BE);	//交点P 
}

Point read_point()
{
    Point p;
    scanf("%lf%lf", &p.x, &p.y);
    return p;
}
 
int main()
{
    int T;
    Point A, B, C, P, Q, R;
    scanf("%d", &T);
    while (T--)
    {
        A = read_point();
        B = read_point();
        C = read_point();
        P = getD(A, B, C);
        Q = getD(B, C, A);
        R = getD(C, A, B);
        double ans = fabs(Area2(P, Q, R)) / 2;
        printf("%.0lf\n", ans);
    }
    return 0;
}


你可能感兴趣的:(ACM,几何)