PDF (English) | Statistics | Forum |
Time Limit: 1 second(s) | Memory Limit: 32 MB |
A parallelogram is a quadrilateral with two pairs of parallel sides. See the picture below:
Fig: a parallelogram
Now you are given the co ordinates of A, B and C, you have to find the coordinates of D and the area of the parallelogram. The orientation of ABCD should be same as in the picture.
Input starts with an integer T (≤ 1000), denoting the number of test cases.
Each case starts with a line containing six integers Ax, Ay, Bx, By, Cx, Cy where (Ax, Ay) denotes the coordinate of A, (Bx, By) denotes the coordinate of B and (Cx, Cy) denotes the coordinate of C. Value of any coordinate lies in the range [-1000, 1000]. And you can assume that A, B and C will not be collinear.
For each case, print the case number and three integers where the first two should be the coordinate of D and the third one should be the area of the parallelogram.
Sample Input |
Output for Sample Input |
3 0 0 10 0 10 10 0 0 10 0 10 -20 -12 -10 21 21 1 40 |
Case 1: 0 10 100 Case 2: 0 -20 200 Case 3: -32 9 1247 |
<pre name="code" class="cpp">#include<stdio.h> #include<cmath> #include<string.h> #include<algorithm> using namespace std; struct node { int x,y; }d[3]; int main() { int t; scanf("%d",&t); int tt=0; while(t--) { scanf("%d%d%d%d%d%d",&d[0].x,&d[0].y,&d[1].x,&d[1].y,&d[2].x,&d[2].y); printf("Case %d: ",++tt); printf("%d %d ",d[0].x+d[2].x-d[1].x,d[0].y+d[2].y-d[1].y); double a,b,c; a=sqrt((d[0].x-d[1].x)*(d[0].x-d[1].x)+(d[0].y-d[1].y)*(d[0].y-d[1].y)); b=sqrt((d[2].x-d[1].x)*(d[2].x-d[1].x)+(d[2].y-d[1].y)*(d[2].y-d[1].y)); c=sqrt((d[0].x-d[2].x)*(d[0].x-d[2].x)+(d[0].y-d[2].y)*(d[0].y-d[2].y)); double p=(a+b+c)/2; double S=sqrt(p*(p-a)*(p-b)*(p-c)); printf("%.0lf\n",S*2); } return 0; }