- 利用OR-Tools多样的约束函数快速建模详解
Lins号丹
优化求解器python求解器OR-Tools
约束目录有定界的线性约束Add()/AddLinearConstraint()绝对值约束AddAbsEquality()互不相等约束AddAllDifferent()限制变量取值AddAllowedAssignments()/AddForbiddenAssignments()多条件约束AddBoolAnd()/AddBoolOr()哈密顿回路AddCircuit()累计数量约束AddCumulat
- 【图论】欧拉回路
u小鬼
ACM23图论深度优先算法
前言你的qq密码是否在圆周率中出现?一个有意思的编码问题:假设密码是固定位数,设有nnn位,每位是数字0-9,那么这样最短的“圆周率”的长度是多少?或者说求一个最短的数字串定包含所有密码。理论一些定义:通过图中所有边恰好一次且行遍所有顶点的通路称为欧拉通路;通过图中所有边恰好一次且行遍所有顶点的回路称为欧拉回路;具有欧拉回路的无向图称为欧拉图;具有欧拉通路但不具有欧拉回路的无向图称为半欧拉图。求欧
- 1123. 铲雪车(欧拉回路)
Landing_on_Mars
#欧拉回路和欧拉路径图论
活动-AcWing随着白天越来越短夜晚越来越长,我们不得不考虑铲雪问题了。整个城市所有的道路都是双向车道,道路的两个方向均需要铲雪。因为城市预算的削减,整个城市只有1辆铲雪车。铲雪车只能把它开过的地方(车道)的雪铲干净,无论哪儿有雪,铲雪车都得从停放的地方出发,游历整个城市的街道。现在的问题是:最少要花多少时间去铲掉所有道路上的雪呢?输入格式输入数据的第1行表示铲雪车的停放坐标(x,y),x,y为
- 1184. 欧拉回路(欧拉回路,模板题)
Landing_on_Mars
#欧拉回路和欧拉路径图论
活动-AcWing给定一张图,请你找出欧拉回路,即在图中找一个环使得每条边都在环上出现恰好一次。输入格式第一行包含一个整数t,t∈{1,2},如果t=1,表示所给图为无向图,如果t=2,表示所给图为有向图。第二行包含两个整数n,m,表示图的结点数和边数。接下来m行中,第i行两个整数vi,ui,表示第i条边(从11开始编号)。如果t=1则表示vi到ui有一条无向边。如果t=2则表示vi到ui有一条有
- 算法题目题单——图论
kaiserqzyue
算法题目算法图论
简介本文为自己做的一部分图论题目,作为题单列出,持续更新。题单由题目链接和题解两部分组成,题解部分提供简洁题意,代码仓库:Kaiser-Yang/OJProblems。对于同一个一级标题下的题目,题目难度尽可能做到递增。搜索/BFS/DFSLuoguP3547[POI2013]CEN-PriceList题目链接:LuoguP3547[POI2013]CEN-PriceList题解:欧拉回路/欧拉通
- Luogu P6066 [USACO05JAN] Watchcow S 题解 欧拉回路
kaiserqzyue
算法题目c++算法图论
题目链接:LuoguP6066[USACO05JAN]WatchcowS欧拉回路题目描述:给定一张无向图,输出任意一条从一号结点出发的欧拉回路(欧拉回路指每条无向边来回经过且只经过一次),给定的图保证这样的欧拉回路存在。题解:只需要从一号结点开始使用Hierholzer算法进行遍历即可。对于一个存在欧拉回路或者欧拉通路的图Hierholzer算法的思想是一直在图中找环,每找到一个环就将这个环从图中
- 欧拉路 与 欧拉回路
Teresa_李庚希
定义欧拉路:从图中一个点s出发,到图中的一点t,经过每条边且每条边仅经过一次欧拉回路:欧拉路中s==t判定条件无向图所有边联通存在欧拉路:度数为奇数的点的个数为0或2存在欧拉回路:度数为奇数的点的个数为0有向图所有边联通存在欧拉路:所有点的入度==出度或除起点(出度==入度+1)和终点(入度==出度+1)外,其他点的入度==出度存在欧拉回路:除起点(出度==入度+1)和终点(入度==出度+1)外,
- 欧拉路径、欧拉回路、欧拉图傻傻分不清楚?看这一篇就够了!
一棵油菜花
算法篇深度优先算法c++笔记图论
推荐在cnblogs阅读欧拉路径、回路、图前言当一手标题党,快乐~之前一直分不清楚,写篇笔记分辨一下。欧拉路径可以一笔画的路径,称为欧拉路径。不要求起点终点为同一点。判定:有向图:图中只有一个出度比入度大111的点(起点),与一个入度比出度大111的点(终点),其余点出入度相等。无向图:图中只有两个奇点(起点和终点),其余点都是偶点。当然,将有向边视作无向边后,路径必须连通。欧拉回路在欧拉路径的基
- 1380 一笔画问题
tiger_mushroom
算法深度优先图论
如果一个无向图存在一笔画,则一笔画的路径叫做欧拉路,如果最后又回到起点,那这个路径叫做欧拉回路。#includeusingnamespacestd;#defineN510intg[N][N],d[N],c[N],n,m,reckon,oddity_point,lt;voiddfs(inti){for(intj=1;j>n>>m;intx,y;memset(g,0,sizeof(g));for(in
- 欧拉回路&欧拉路【详解】
tiger_mushroom
欧拉回路欧拉路深度优先算法
1.引入2.概念3.解决方法4.例题5.回顾1.引入经典的七桥问题哥尼斯堡是位于普累格河上的一座城市,它包含两个岛屿及连接它们的七座桥,如下图所示。可否走过这样的七座桥,而且每桥只走过一次?你怎样证明?后来大数学家欧拉把它转化成一个几何问题——一笔画问题。我们的大数学家欧拉,找到了它的重要条件1.奇点的数目不是0个就是2个奇点:就是度为奇数(有向图是判断出度与入度是否相等),反之为偶点有向图1、连
- 拆点成边来建图 +BEST定理:ABC336G
Qres821
图论BEST定理
https://www.luogu.com.cn/problem/AT_abc336_g考虑一个状态(a,b,c,d)(a,b,c,d)(a,b,c,d)要出现kkk次,如果相当于每次加1个字符,相当于要从(a,b,c)(a,b,c)(a,b,c)走到(b,c,d)(b,c,d)(b,c,d)走kkk次。因此我们就可以根据这样建图。问题转化为求一个图的欧拉路径/欧拉回路条数。由于起终点相同的边没有
- AtCoder Beginner Contest 336 G. 16 Integers(图计数 欧拉路径转欧拉回路 矩阵树定理 best定理)
Code92007
知识点总结#图计数#欧拉回路/欧拉路径图计数欧拉路径欧拉回路best定理
题目给16个非负整数,x[i∈(0,1)][j∈(0,1)][k∈(0,1)][l∈(0,1)]求长为n+3的01串的方案数,满足长度为4的ijkl(2*2*2*2,16种情况)串恰为x[i][j][k][l]个答案对998244353取模思路来源https://www.cnblogs.com/tzcwk/p/matrix-tree-best-theroem.html矩阵树定理-OIWiki知识点
- 代码随想录算法训练营第三十天|总结、332.重新安排行程、51.N皇后、37.解数独
Buuuleven.(程序媛
算法数据结构javaleetcode开发语言
代码随想录(programmercarl.com)总结332.重新安排行程欧拉通路和欧拉回路:欧拉通路:对于图G来说,如果存在一条通路包含G的所有边,则该通路称为欧拉通路,也称欧拉路径。欧拉回路:如果欧拉路径是一条回路,那么称其为欧拉回路。欧拉图:含有欧拉回路的图是欧拉图。题目中说必然存在一条有效路径,所以至少是半欧拉图,也可以是欧拉图。深度优先搜索(DFS):对每一个可能的分支路径深入到不能再深
- NPC问题
Recursions
算法
1.P问题和NP问题:P问题(多项式时间可解问题):P问题是可以在多项式时间内有效解决的问题,即存在一个算法,其运行时间是输入规模的多项式函数。例如,排序算法、搜索算法等都属于P问题。NP问题(非确定性多项式时间问题):NP问题是可以在多项式时间内验证一个解的问题。如果给定一个解,我们可以在多项式时间内验证这个解的正确性。例如,图的哈密顿回路问题、图的着色问题都是NP问题。2.NPC问题(NP-完
- 关于MIPS上手应知应会-如何把C语言改写为MIPS!
桃木山人
汇编c++嵌入式硬件
文章目录寄存器指令使用技巧翻译C/C++if/else语句switch语句for循环while循环do...while循环一维数组定义与使用二维数组定义与使用例:哈密顿回路注意立即数被符号位扩展参考链接寄存器NameReg.NumUsagezerozerozero0constantvalue=0(恒为0)atatat1reservedforassembler(为汇编程序保留)v0–v1v0–v1v
- 回溯法寻找连通图中是否存在哈密顿回路
Daylightap
算法图论数据结构
使用了回溯法寻找连通图中是否存在哈密顿回路.哈密顿回路:除了始末点,其他所有点只经过一次需要注意的地方:①由哈密顿回路的定义,既然经过了n个点,除了始末两点都不重合,那么这条回路有n条边,在回到初始点前的那一个点处,已经经过了n-1条边②起始点start并没有存在数组中,需要手动额外打印③一定要记得使用memset初始化④检查所有点是否都遍历完的for循环需要放在遍历图的for循环外面⑤递归之后记
- Java程序员面试需要注意啥?面试常见手撕模板题以及笔试模板总结
Java_苏先生
一.目录排序二分二叉树非递归遍历01背包最长递增子序列最长公共子序列最长公共子串大数加法大数乘法大数阶乘全排列子集N皇后并查集树状数组线段树字典树单调栈单调队列KMPManacher算法拓扑排序最小生成树最短路欧拉回路GCD和LCM素数筛法唯一分解定理乘法快速幂矩阵快速幂二.面试常见手撕模板题以及笔试模板总结0.Java快速输入先给一个干货,可能有些题用Java会超时(很少),下面是Petr刷题时
- C++ 图论算法之欧拉路径、欧拉回路算法(一笔画完)
一枚大果壳
c++图论算法欧拉欧拉回路
公众号:编程驿站1.欧拉图本文从哥尼斯堡七桥的故事说起。哥尼斯堡城有一条横贯全市的普雷格尔河,河中的两个岛与两岸用七座桥连结起来。当时那里的居民热衷于一个话题:怎样不重复地走遍七桥,最后回到出发点。这也是经典的一笔画完问题。1736年瑞士数学家欧拉(Euler)发表了论文《哥尼斯堡七桥问题》。论文中使用图论理论解决哥尼斯堡七桥问题,欧拉图由此而来。论文中欧拉证明了如下定理:一个非空连通图当且仅当每
- hdu-1878-欧拉回路-图论-并查集-java
Li-金玉良言
hdujavahdu图论并查集
欧拉回路TimeLimit:2000/1000MS(Java/Others)MemoryLimit:32768/32768K(Java/Others)TotalSubmission(s):14821AcceptedSubmission(s):5673ProblemDescription欧拉回路是指不令笔离开纸面,可画过图中每条边仅一次,且可以回到起点的一条回路。现给定一个图,问是否存在欧拉回路?I
- 哥尼斯堡的“七桥问题”——欧拉回路
OLDERHARD
算法数据结构
哥尼斯堡是位于普累格河上的一座城市,它包含两个岛屿及连接它们的七座桥,如下图所示。可否走过这样的七座桥,而且每桥只走过一次?瑞士数学家欧拉(LeonhardEuler,1707—1783)最终解决了这个问题,并由此创立了拓扑学。这个问题如今可以描述为判断欧拉回路是否存在的问题。欧拉回路是指不令笔离开纸面,可画过图中每条边仅一次,且可以回到起点的一条回路。现给定一个无向图,问是否存在欧拉回路?输入格
- [Tricks] 记各类欧拉回路问题
yingxue_cat
深度优先图论算法
以前从来没见过除了板子以外的题,但最近总是做题见到欧拉回路,然后一样的trick每次都想不到。怎么一点举一反三的能力都没有的?板子有向图的欧拉回路dfs,当前弧优化。Codestackq;voiddfs(intu){for(inti=head[u];i;i=head[u]){head[u]=e[i].nxt;intv=e[i].to;dfs(v);}q.push(u);}无向图的欧拉回路要双向标记
- 【题解】洛谷P3443 [POI2006] LIS-The Postman 题解
conti123
C++题解c++
P3443题意分析Code题意原题链接求一条以111为起点的欧拉回路,使得给定路口序列在路线及求出的欧拉回路序列中出现。分析首先,肯定是要存在欧拉路径的。而有向图中存在欧拉路径须满足以下条件:图去掉孤立点后联通和每个点的入度等于出度。注意到规定的每个路口序列都必须在路线中连续出现,及如果我们存在路线,我们不能改变走这些规定的序列的顺序。那么相当于这些边是被限制死的了,不能改变,所以可以将它们合并为
- DFS求解欧拉回路
嘻嘻哈哈Man
DFS
思路:利用欧拉定理判断出一个图存在欧拉通路或欧拉回路;选择一个正确的起始顶点,用DFS遍历所有的边(每条边只能遍历一次),走不通就回溯;在搜索前进的方向上将遍历过的边按顺序记录下来;这组边的排列就组成了一条欧拉通路或回路。参考欧拉回路原理:https://blog.csdn.net/PacosonSWJTU/article/details/50007847代码:https://blog.csdn.
- 最小字典序欧拉路径
mxYlulu
队内集训心得欧拉路径
欧拉路就是所有边都走一次,也只走一次。欧拉回路就是能够回到起点,欧拉路径没有这么多要求。算法本质是这样的:从起点开始,尽可能地不去走桥(走完之后会把图分成两半),而去走其他边,这样的输出是欧拉路径。但是判桥的过程较为麻烦,我们可以采取这样的手段。如果起点开始有两条边,一条边是应该走的边,另一条是桥。如果我们采用dfsdfsdfs的方式先遍历到底,直到无路可走的时候才加入答案栈中,我们容易知道的是最
- DFS应用——寻找欧拉回路
PacosonSWJTU
数据结构dfs欧拉回路
【0】README0.1)本文总结于数据结构与算法分析,源代码均为原创,旨在理解“DFS应用——寻找欧拉回路”的idea并用源代码加以实现(源代码,我还没有找到一种有效的数据结构和DFS进行结合,往后会po出);【1】欧拉回路1.1)欧拉回路定义:我们必须在图中找出一条路径,使得该路径对图的每条边恰好访问一次。如果我们要解决“附加的问题”,那么我们就必须找到一个圈,该圈恰好经过每条边一次,这种图论
- 【数据结构】图的简介(图的逻辑结构)
Hsianus
数据结构与算法数据结构
一.引例(哥尼斯堡七桥问题)哥尼斯堡七桥问题是指在哥尼斯堡市(今属俄罗斯)的普雷格尔河(PregelRiver)中,是否可以走遍每座桥一次且仅一次,最后回到起点的问题。这个问题被认为是图论的开端,也是数学史上著名的问题之一。欧拉在解决这个问题时,将问题转化为了图论中的欧拉回路问题。他证明了如果一个图中有欧拉回路,那么这个图中每个顶点的度数都是偶数。反之,如果每个顶点的度数都是偶数,那么这个图中就存
- 欧拉回路和欧拉路径
王木木很酷_
#数据结构与算法算法数据结构java开发语言
目录欧拉回路基础欧拉回路的定义欧拉回路的性质判断图中是否存在欧拉回路的java代码实现寻找欧拉回路的三个算法Hierholzer算法详细思路代码实现欧拉路径欧拉路径的定义欧拉路径的性质欧拉回路基础欧拉回路的定义欧拉回路遍历了所有的边,也就意味着遍历了所有的点,但这并不能代表有欧拉回路的地方都有哈密尔顿回路的,如下图的例子。欧拉回路的性质上图四个点的度数都是奇数,所以不存在欧拉回路。欧拉回路的条件:
- 图论15-有向图-环检测+度数+欧拉回路
大大枫
图论图论深度优先算法
文章目录1.有向图设计1.1私有变量标记是否有向1.2添加边的处理,双向变单向1.3删除边的处理,双向变单向1.4有向图的出度和入度2有向图的环检测2.1普通的算法实现换检测2.2拓扑排序中的环检测3欧拉回路1.有向图设计1.1私有变量标记是否有向privatebooleandirected;设计接口来判断是否有向:publicbooleanisDirected(){returndirected;
- 图论11-欧拉回路与欧拉路径+Hierholzer算法实现
大大枫
图论图论算法
文章目录1欧拉回路的概念2欧拉回路的算法实现3Hierholzer算法详解4Hierholzer算法实现4.1修改Graph,增加API4.2Graph.java4.3联通分量类4.4欧拉回路类1欧拉回路的概念2欧拉回路的算法实现privatebooleanhasEulerLoop(){CCcc=newCC(G);if(cc.count()>1)returnfalse;for(intv=0;vre
- 图论(欧拉路径)
炒饭加蛋挞
图论
理论:所有边都经过一次,若欧拉路径,起点终点相同,欧拉回路有向图欧拉路径:恰好一个out=in+1,一个in=out+1,其余in=out有向图欧拉回路:所有in=out无向图欧拉路径:两个点度数奇,其余偶无向图欧拉回路:全偶基础练习P7771【模板】欧拉路径P2731[USACO3.3]骑马修栅栏RidingtheFencesP1341无序字母对进阶P3520[POI2011]SMI-Garba
- Spring的注解积累
yijiesuifeng
spring注解
用注解来向Spring容器注册Bean。
需要在applicationContext.xml中注册:
<context:component-scan base-package=”pagkage1[,pagkage2,…,pagkageN]”/>。
如:在base-package指明一个包
<context:component-sc
- 传感器
百合不是茶
android传感器
android传感器的作用主要就是来获取数据,根据得到的数据来触发某种事件
下面就以重力传感器为例;
1,在onCreate中获得传感器服务
private SensorManager sm;// 获得系统的服务
private Sensor sensor;// 创建传感器实例
@Override
protected void
- [光磁与探测]金吕玉衣的意义
comsci
这是一个古代人的秘密:现在告诉大家
信不信由你们:
穿上金律玉衣的人,如果处于灵魂出窍的状态,可以飞到宇宙中去看星星
这就是为什么古代
- 精简的反序打印某个数
沐刃青蛟
打印
以前看到一些让求反序打印某个数的程序。
比如:输入123,输出321。
记得以前是告诉你是几位数的,当时就抓耳挠腮,完全没有思路。
似乎最后是用到%和/方法解决的。
而今突然想到一个简短的方法,就可以实现任意位数的反序打印(但是如果是首位数或者尾位数为0时就没有打印出来了)
代码如下:
long num, num1=0;
- PHP:6种方法获取文件的扩展名
IT独行者
PHP扩展名
PHP:6种方法获取文件的扩展名
1、字符串查找和截取的方法
1
$extension
=
substr
(
strrchr
(
$file
,
'.'
), 1);
2、字符串查找和截取的方法二
1
$extension
=
substr
- 面试111
文强chu
面试
1事务隔离级别有那些 ,事务特性是什么(问到一次)
2 spring aop 如何管理事务的,如何实现的。动态代理如何实现,jdk怎么实现动态代理的,ioc是怎么实现的,spring是单例还是多例,有那些初始化bean的方式,各有什么区别(经常问)
3 struts默认提供了那些拦截器 (一次)
4 过滤器和拦截器的区别 (频率也挺高)
5 final,finally final
- XML的四种解析方式
小桔子
domjdomdom4jsax
在平时工作中,难免会遇到把 XML 作为数据存储格式。面对目前种类繁多的解决方案,哪个最适合我们呢?在这篇文章中,我对这四种主流方案做一个不完全评测,仅仅针对遍历 XML 这块来测试,因为遍历 XML 是工作中使用最多的(至少我认为)。 预 备 测试环境: AMD 毒龙1.4G OC 1.5G、256M DDR333、Windows2000 Server
- wordpress中常见的操作
aichenglong
中文注册wordpress移除菜单
1 wordpress中使用中文名注册解决办法
1)使用插件
2)修改wp源代码
进入到wp-include/formatting.php文件中找到
function sanitize_user( $username, $strict = false
- 小飞飞学管理-1
alafqq
管理
项目管理的下午题,其实就在提出问题(挑刺),分析问题,解决问题。
今天我随意看下10年上半年的第一题。主要就是项目经理的提拨和培养。
结合我自己经历写下心得
对于公司选拔和培养项目经理的制度有什么毛病呢?
1,公司考察,选拔项目经理,只关注技术能力,而很少或没有关注管理方面的经验,能力。
2,公司对项目经理缺乏必要的项目管理知识和技能方面的培训。
3,公司对项目经理的工作缺乏进行指
- IO输入输出部分探讨
百合不是茶
IO
//文件处理 在处理文件输入输出时要引入java.IO这个包;
/*
1,运用File类对文件目录和属性进行操作
2,理解流,理解输入输出流的概念
3,使用字节/符流对文件进行读/写操作
4,了解标准的I/O
5,了解对象序列化
*/
//1,运用File类对文件目录和属性进行操作
//在工程中线创建一个text.txt
- getElementById的用法
bijian1013
element
getElementById是通过Id来设置/返回HTML标签的属性及调用其事件与方法。用这个方法基本上可以控制页面所有标签,条件很简单,就是给每个标签分配一个ID号。
返回具有指定ID属性值的第一个对象的一个引用。
语法:
&n
- 励志经典语录
bijian1013
励志人生
经典语录1:
哈佛有一个著名的理论:人的差别在于业余时间,而一个人的命运决定于晚上8点到10点之间。每晚抽出2个小时的时间用来阅读、进修、思考或参加有意的演讲、讨论,你会发现,你的人生正在发生改变,坚持数年之后,成功会向你招手。不要每天抱着QQ/MSN/游戏/电影/肥皂剧……奋斗到12点都舍不得休息,看就看一些励志的影视或者文章,不要当作消遣;学会思考人生,学会感悟人生
- [MongoDB学习笔记三]MongoDB分片
bit1129
mongodb
MongoDB的副本集(Replica Set)一方面解决了数据的备份和数据的可靠性问题,另一方面也提升了数据的读写性能。MongoDB分片(Sharding)则解决了数据的扩容问题,MongoDB作为云计算时代的分布式数据库,大容量数据存储,高效并发的数据存取,自动容错等是MongoDB的关键指标。
本篇介绍MongoDB的切片(Sharding)
1.何时需要分片
&nbs
- 【Spark八十三】BlockManager在Spark中的使用场景
bit1129
manager
1. Broadcast变量的存储,在HttpBroadcast类中可以知道
2. RDD通过CacheManager存储RDD中的数据,CacheManager也是通过BlockManager进行存储的
3. ShuffleMapTask得到的结果数据,是通过FileShuffleBlockManager进行管理的,而FileShuffleBlockManager最终也是使用BlockMan
- yum方式部署zabbix
ronin47
yum方式部署zabbix
安装网络yum库#rpm -ivh http://repo.zabbix.com/zabbix/2.4/rhel/6/x86_64/zabbix-release-2.4-1.el6.noarch.rpm 通过yum装mysql和zabbix调用的插件还有agent代理#yum install zabbix-server-mysql zabbix-web-mysql mysql-
- Hibernate4和MySQL5.5自动创建表失败问题解决方法
byalias
J2EEHibernate4
今天初学Hibernate4,了解了使用Hibernate的过程。大体分为4个步骤:
①创建hibernate.cfg.xml文件
②创建持久化对象
③创建*.hbm.xml映射文件
④编写hibernate相应代码
在第四步中,进行了单元测试,测试预期结果是hibernate自动帮助在数据库中创建数据表,结果JUnit单元测试没有问题,在控制台打印了创建数据表的SQL语句,但在数据库中
- Netty源码学习-FrameDecoder
bylijinnan
javanetty
Netty 3.x的user guide里FrameDecoder的例子,有几个疑问:
1.文档说:FrameDecoder calls decode method with an internally maintained cumulative buffer whenever new data is received.
为什么每次有新数据到达时,都会调用decode方法?
2.Dec
- SQL行列转换方法
chicony
行列转换
create table tb(终端名称 varchar(10) , CEI分值 varchar(10) , 终端数量 int)
insert into tb values('三星' , '0-5' , 74)
insert into tb values('三星' , '10-15' , 83)
insert into tb values('苹果' , '0-5' , 93)
- 中文编码测试
ctrain
编码
循环打印转换编码
String[] codes = {
"iso-8859-1",
"utf-8",
"gbk",
"unicode"
};
for (int i = 0; i < codes.length; i++) {
for (int j
- hive 客户端查询报堆内存溢出解决方法
daizj
hive堆内存溢出
hive> select * from t_test where ds=20150323 limit 2;
OK
Exception in thread "main" java.lang.OutOfMemoryError: Java heap space
问题原因: hive堆内存默认为256M
这个问题的解决方法为:
修改/us
- 人有多大懒,才有多大闲 (评论『卓有成效的程序员』)
dcj3sjt126com
程序员
卓有成效的程序员给我的震撼很大,程序员作为特殊的群体,有的人可以这么懒, 懒到事情都交给机器去做 ,而有的人又可以那么勤奋,每天都孜孜不倦得做着重复单调的工作。
在看这本书之前,我属于勤奋的人,而看完这本书以后,我要努力变成懒惰的人。
不要在去庞大的开始菜单里面一项一项搜索自己的应用程序,也不要在自己的桌面上放置眼花缭乱的快捷图标
- Eclipse简单有用的配置
dcj3sjt126com
eclipse
1、显示行号 Window -- Prefences -- General -- Editors -- Text Editors -- show line numbers
2、代码提示字符 Window ->Perferences,并依次展开 Java -> Editor -> Content Assist,最下面一栏 auto-Activation
- 在tomcat上面安装solr4.8.0全过程
eksliang
Solrsolr4.0后的版本安装solr4.8.0安装
转载请出自出处:
http://eksliang.iteye.com/blog/2096478
首先solr是一个基于java的web的应用,所以安装solr之前必须先安装JDK和tomcat,我这里就先省略安装tomcat和jdk了
第一步:当然是下载去官网上下载最新的solr版本,下载地址
- Android APP通用型拒绝服务、漏洞分析报告
gg163
漏洞androidAPP分析
点评:记得曾经有段时间很多SRC平台被刷了大量APP本地拒绝服务漏洞,移动安全团队爱内测(ineice.com)发现了一个安卓客户端的通用型拒绝服务漏洞,来看看他们的详细分析吧。
0xr0ot和Xbalien交流所有可能导致应用拒绝服务的异常类型时,发现了一处通用的本地拒绝服务漏洞。该通用型本地拒绝服务可以造成大面积的app拒绝服务。
针对序列化对象而出现的拒绝服务主要
- HoverTree项目已经实现分层
hvt
编程.netWebC#ASP.ENT
HoverTree项目已经初步实现分层,源代码已经上传到 http://hovertree.codeplex.com请到SOURCE CODE查看。在本地用SQL Server 2008 数据库测试成功。数据库和表请参考:http://keleyi.com/a/bjae/ue6stb42.htmHoverTree是一个ASP.NET 开源项目,希望对你学习ASP.NET或者C#语言有帮助,如果你对
- Google Maps API v3: Remove Markers 移除标记
天梯梦
google maps api
Simply do the following:
I. Declare a global variable:
var markersArray = [];
II. Define a function:
function clearOverlays() {
for (var i = 0; i < markersArray.length; i++ )
- jQuery选择器总结
lq38366
jquery选择器
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
- 基础数据结构和算法六:Quick sort
sunwinner
AlgorithmQuicksort
Quick sort is probably used more widely than any other. It is popular because it is not difficult to implement, works well for a variety of different kinds of input data, and is substantially faster t
- 如何让Flash不遮挡HTML div元素的技巧_HTML/Xhtml_网页制作
刘星宇
htmlWeb
今天在写一个flash广告代码的时候,因为flash自带的链接,容易被当成弹出广告,所以做了一个div层放到flash上面,这样链接都是a触发的不会被拦截,但发现flash一直处于div层上面,原来flash需要加个参数才可以。
让flash置于DIV层之下的方法,让flash不挡住飘浮层或下拉菜单,让Flash不档住浮动对象或层的关键参数:wmode=opaque。
方法如下:
- Mybatis实用Mapper SQL汇总示例
wdmcygah
sqlmysqlmybatis实用
Mybatis作为一个非常好用的持久层框架,相关资料真的是少得可怜,所幸的是官方文档还算详细。本博文主要列举一些个人感觉比较常用的场景及相应的Mapper SQL写法,希望能够对大家有所帮助。
不少持久层框架对动态SQL的支持不足,在SQL需要动态拼接时非常苦恼,而Mybatis很好地解决了这个问题,算是框架的一大亮点。对于常见的场景,例如:批量插入/更新/删除,模糊查询,多条件查询,联表查询,