- 【华为OD技术面试真题 - 技术面】- python八股文真题题库(1)
算法大师
华为od面试python
华为OD面试真题精选专栏:华为OD面试真题精选目录:2024华为OD面试手撕代码真题目录以及八股文真题目录文章目录华为OD面试真题精选1.数据预处理流程数据预处理的主要步骤工具和库2.介绍线性回归、逻辑回归模型线性回归(LinearRegression)模型形式:关键点:逻辑回归(LogisticRegression)模型形式:关键点:参数估计与评估:3.python浅拷贝及深拷贝浅拷贝(Shal
- 几率odds与逻辑回归
元气小地瓜
https://www.jianshu.com/p/aa73938f32ee几率odds从Odds角度理解LogisticRegression模型的参数13December20151.引言无论在学术界,还是在工业界,LogisticRegression(LR,逻辑回归)模型[1]是常用的分类模型,被用于各种分类场景和点击率预估问题等,它也是MaxEntropy(ME,最大熵)模型[2],或者说So
- R语言多项逻辑回归-因变量是无序多分类
医学和生信笔记
医学统计学r语言医学统计学
因变量是无序多分类资料(>2)时,可使用多分类逻辑回归(multinomiallogisticregression)。使用课本例16-5的数据,课本电子版及数据已上传到QQ群,自行下载即可。某研究人员欲了解不同社区和性别之间居民获取健康知识的途径是否相同,对2个社区的314名成人进行了调查,其中X1是社区,社区1用0表示,社区2用1表示;X2是性别,0是男,1是女,Y是获取健康知识途径,1是传统大
- 深度学习之sigmoid函数介绍
yueguang8
人工智能深度学习人工智能
1.基本概念Sigmoid函数,也称为Logistic函数,是一种常用的数学函数,其数学表达式为:其中,e是自然对数的底数,Zj是输入变量。Sigmoid函数曲线如下所示:计算示例:原始输出结果Zj:[-0.6,1.4,2.5]使用Sigmoid函数后输出为:[0.35,0.8,0.92]2.Sigmoid函数特点Sigmoid函数具有以下特点:值域限定在(0,1)之间:Sigmoid函数的输出范
- XGBoost调参demo(Python)
妄念驱动
机器学习算法python机器学习XGBoostpython
XGBoost我们用的是保险公司的一份数据#各种库importpandasaspdimportnumpyasnpimportmatplotlib.pyplotaspltfromsklearn.linear_modelimportLogisticRegressionfromsklearn.ensembleimportRandomForestClassifierfromsklearn.metricsi
- 12、Flink 解决流上的确定性最佳实践
猫猫爱吃小鱼粮
FlinkSQLflink大数据
最佳实践示例1运行流查询前主动开启TRY_RESOLVE模式,在检查到流查询中存在无法解决的NDU问题时,尽量按照错误提示修改SQL主动避免问题示例:FLINK-27639INSERTINTOt_join_sinkSELECTo.order_id,o.order_name,l.logistics_id,l.logistics_target,l.
- python logistic regression_机器学习算法与Python实践之逻辑回归(Logistic Regression)
weixin_39702649
pythonlogisticregression
机器学习算法与Python实践这个系列主要是参考下载地址:https://bbs.pinggu.org/thread-2256090-1-1.html一、逻辑回归(LogisticRegression)Logisticregression(逻辑回归)是当前业界比较常用的机器学习方法,用于估计某种事物的可能性。之前在经典之作《数学之美》中也看到了它用于广告预测,也就是根据某广告被用户点击的可能性,把
- Logistic分类算法原理及Python实践
doublexiao79
数据分析与挖掘分类python数据挖掘
一、Logistic分类算法原理Logistic分类算法,也称为逻辑回归(LogisticRegression),是机器学习中的一种经典分类算法,主要用于解决二分类问题。其原理基于线性回归和逻辑函数(Sigmoid函数)的组合,能够将输入特征的线性组合映射到一个概率范围内,从而进行分类预测。以下是Logistic分类算法的主要原理:1.线性组合首先,对于输入的n个特征,我们将其表示为一个n维的列向
- python logistic模型_Python实践之逻辑回归(Logistic Regression)
weixin_39922394
pythonlogistic模型
机器学习算法与Python实践这个系列主要是参考《机器学习实战》这本书。因为自己想学习Python,然后也想对一些机器学习算法加深下了解,所以就想通过Python来实现几个比较常用的机器学习算法。恰好遇见这本同样定位的书籍,所以就参考这本书的过程来学习了。这节学习的是逻辑回归(LogisticRegression),也算进入了比较正统的机器学习算法。啥叫正统呢?我概念里面机器学习算法一般是这样一个
- 机器学习算法深度总结(5)-逻辑回归
婉妃
1.模型定义逻辑回归属于基于概率分类的学习法.基于概率的模式识别是指对模式x所对应的类别y的后验概率禁行学习.其所属类别为后验概率最大时的类别:预测类别的后验概率,可理解为模式x所属类别y的可信度.逻辑回归(logistic),使用线性对数函数对分类后验概率进行模型化:上式,分母是满足概率总和为1的约束条件的正则化项,参数向量维数为:考虑二分类问题:使用上述关系式,logistic模型的参数个数从
- Logistic 回归
零 度°
机器学习回归数据挖掘人工智能
文章目录1.引言2.Logistic回归概述2.1定义与应用场景2.2与线性回归的区别3.原理与数学基础3.1Sigmoid函数3.2概率解释3.3极大似然估计4.模型建立4.1假设函数4.2成本函数4.3梯度下降法5.正则化5.1正则化的目的与类型5.1.1正则化的目的5.1.2正则化的类型5.2L1和L2正则化5.2.1L1正则化5.2.2L2正则化6.多分类问题6.1一对多(OvA)6.2一
- 四十一、【人工智能】【机器学习】- Bayesian Logistic Regression算法模型
暴躁的大熊
人工智能人工智能机器学习算法
系列文章目录第一章【机器学习】初识机器学习第二章【机器学习】【监督学习】-逻辑回归算法(LogisticRegression)第三章【机器学习】【监督学习】-支持向量机(SVM)第四章【机器学习】【监督学习】-K-近邻算法(K-NN)第五章【机器学习】【监督学习】-决策树(DecisionTrees)第六章【机器学习】【监督学习】-梯度提升机(GradientBoostingMachine,GBM
- 逻辑回归C参数选择,利用交叉验证实现
吃什么芹菜卷
机器学习逻辑回归算法机器学习笔记
目录前言一、C参数二、交叉验证1.交叉验证是什么2.交叉验证的基本原理3.交叉验证的作用4.常见的交叉验证方法三、k折交叉验证四、C参数和k折交叉验证的关系五、代码实现1.导入库2.k折交叉验证选择C参数3.建立最优模型总结前言逻辑回归(LogisticRegression)是一种用于二分类问题的统计模型和机器学习算法,旨在预测事件的概率。它基于一个线性模型,并通过一个逻辑函数(通常是Sigmoi
- Topic 10. 单因素 Logistic 回归分析—单因素分析表格
90066456ace6
上期学习了怎样汇总单因素Cox回归的结果,这期学习单因素Logistic回归分的汇总,由于使用的是coxph和glm两个函数结果的展示有所不同,因此整理过程略有不同,但是提取的信息是一致的。01单因素Logistic回归分析方法Logistic回归模型是一种概率模型它是以某一事件发生与否的概率P为因变量,以影响P的因素为自变量建立的回归模型,分析某事件发生的概率与自变量之间的关系,是一种非线性回归
- R语言武汉流动人口趋势预测:灰色模型GM(1,1)、ARIMA时间序列、logistic逻辑回归模型|附代码数据
数据挖掘深度学习机器学习算法
全文链接:http://tecdat.cn/?p=32496原文出处:拓端数据部落公众号人口流动与迁移,作为人类产生以来就存在的一种社会现象,伴随着人类文明的不断进步从未间断。人力资源是社会文明进步、人民富裕幸福、国家繁荣昌盛的核心推动力量。当前,我国经济正处于从以政府主导的投资驱动型的经济“旧常态”向以市场需求为主导的经济“新常态”转型过渡期。本文帮助客户综合运用R语言灰色预测模型和logist
- 吴恩达机器学习全课程笔记第二篇
亿维数组
MachineLearning机器学习笔记人工智能学习
目录前言P31-P33logistics(逻辑)回归决策边界P34-P36逻辑回归的代价函数梯度下降的实现P37-P41过拟合问题正则化代价函数正则化线性回归正则化logistics回归前言这是吴恩达机器学习笔记的第二篇,第一篇笔记请见:吴恩达机器学习全课程笔记第一篇完整的课程链接如下:吴恩达机器学习教程(bilibili)推荐网站:scikit-learn中文社区吴恩达机器学习学习资料(gith
- 【风电预测】基于Logistic混沌映射改进的麻雀算法优化BP神经网络风电功率预测附Matlab代码
前程算法matlab屋
预测模型算法神经网络matlab
✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。个人主页:Matlab科研工作室个人信条:格物致知。更多Matlab完整代码及仿真定制内容点击智能优化算法神经网络预测雷达通信无线传感器电力系统信号处理图像处理路径规划元胞自动机无人机内容介绍摘要风电功率预测在风电场运行和电网调度中至关重要。本文提出了一种基于Logistic混沌映射改进的麻雀
- 深度学习之pytorch实现逻辑斯蒂回归
温柔了岁月.c
机器学习深度学习回归人工智能logistic回归逻辑斯蒂pytorch
深度学习之pytorch实现逻辑斯蒂回归解决的问题数学公式logiatic函数损失值代码与线性回归代码的区别数据损失值构造回归的函数结果分析解决的问题logistic适用于分类问题,这里案例(y为0和1,0和1分别代表一类)于解决二分类(0or1)问题的机器学习方法,用于估计某种事物的可能性数学公式logiatic函数损失值代码也是用y=wx+b的模型来举例,之前的输出y属于实数集合R,现在我们要
- 机器学习训练营逻辑回归分类预测学习笔记
咩神烦
天池学习笔记逻辑回归python机器学习
#1.学习知识点概要1.1逻辑回归1.2python的逻辑回归实现#2.学习内容主要学习了逻辑回归的基本公式和概念,然后实践了逻辑回归的简单应用(以iris数据库为例子)。内容比较简单之前都有接触过。###逻辑回归(LR)Logistic回归是一种分类方法,主要用于两分类问题(binaryproblem),所以利用了Logistic函数(或称为Sigmoid函数),函数形式为:$$logi(z)=
- AI算法初识之分类汇总
初心不忘产学研
人工智能算法大数据机器学习深度学习
一、背景AI算法的分类方式多种多样,可以根据不同的学习机制、功能用途以及模型结构进行划分。以下是一些主要的分类方式及相应的代表性算法:1.按照学习类型-**监督学习**:-线性回归(LinearRegression)-逻辑回归(LogisticRegression)-决策树(DecisionTree)-随机森林(RandomForest)-支持向量机(SupportVectorMachines,S
- COMP26120 Lab Exercise 5: The 0/1 Knapsack Problem
java
IntroductionInthissectionweintroducethe‘0/1Knapsack’problem.The0/1KnapsackProblemandLogisticsSupposeanairlinecargocompanyhas1aeroplanewhichitfliesfromtheUKtotheUSonadailybasistotransportsomecargo.Inad
- 文献阅读-nomogram文章(七)
cHarden13
题目:DevelopmentandValidationofaRadiomicsNomogramforPreoperativePredictionofLymphNodeMetastasisinColorectalCancerlogistic回归;放射组学;结直肠癌;淋巴结转移ref:医学方:临床医生的逆袭:深入解析临床研究预测类文章思路,带你成为科研“大牛”!一.纳入病人纳入2007.2-2010.
- Logistic回归
洛克黄瓜
Logistic回归假设有一些数据点,我们用一条直线对这些点进行拟合(该线称为最佳拟合直线),这个拟合过程称作回归。训练分类器时的做法就是寻找最佳拟合参数,使用的是最优化算法。二值型输出分类器Sigmoid函数image.png为了实现Logistic回归分类器,在每个特征值上乘以一个回归系数,然后把所有值相加,将这个总和代入上述函数中,进而得到一个范围在0~1之间的数值。任何大于0.5的数据分为
- R语言逻辑回归logistic模型分析泰坦尼克titanic数据集预测生还情况
拓端研究室
R语言R语言逻辑回归logistic泰坦尼克titanic
最近我们被客户要求撰写关于逻辑回归的研究报告,包括一些图形和统计输出。相关视频:R语言逻辑回归(Logistic回归)模型分类预测病人冠心病风险逻辑回归Logistic模型原理和R语言分类预测冠心病风险实例,时长06:48逻辑回归是一种拟合回归曲线的方法,y=f(x),当y是一个分类变量时。这个模型的典型用途是在给定一组预测因素x的情况下预测y,预测因素可以是连续的、分类的或混合的。一般来说,分类
- 深度学习笔记
stoAir
深度学习笔记人工智能
DeepLearningBasic神经网络:algorithm1input1outputinput2input3input4algorithm2监督学习:1个x对应1个y;Sigmoid:激活函数sigmoid=11+e−xsigmoid=\frac{1}{1+e^{-x}}sigmoid=1+e−x1ReLU:线性整流函数;##LogisticRegression-->binaryclassif
- 基于jieba、TfidfVectorizer、LogisticRegression的垃圾邮件分类,模型平均得分为0.98左右(附代码和数据集)
代码讲故事
机器人智慧之心数据挖掘jiebaTfidfVectorizer垃圾邮件深度学习机器学习模型
基于jieba、TfidfVectorizer、LogisticRegression的垃圾邮件分类,模型平均得分为0.98左右(附代码和数据集)。垃圾邮件分类识别是一种常见的文本分类任务,旨在将收件箱中的邮件分为垃圾邮件和非垃圾邮件。以下是一些常用的技术和方法用于垃圾邮件分类识别:基于规则的过滤(Rule-basedFiltering):这种方法使用事先定义好的规则来筛选垃圾邮件。规则可以包括关键
- 使用Logistic Regression进行文本分类
bitcarmanlee
textclassifierLogisticRegression文本分类
1.文本格式sentence,label游戏太坑,暴率太低,太克金,平民不能玩,negative让人失望,negative能解决一下服务器问题?网络正常老掉线,换手机也一样。。。,negative期待,positive一星也不想给,这特么简直龟速,炫舞老年版?,negative衣服不好看游戏内容无特色,界面乱糟糟的,negative喜欢喜欢,positive从有了这个手游就一直玩,很喜欢呀,希望更
- 机器学习复习(8)——逻辑回归
不会写代码!!
人工智能机器学习复习Python学习机器学习逻辑回归人工智能
目录逻辑函数(LogisticFunction)逻辑回归模型的假设函数从逻辑回归模型转换到最大似然函数过程最大似然函数方法梯度下降逻辑函数(LogisticFunction)首先,逻辑函数,也称为Sigmoid函数,是一个常见的S形函数。其数学表达式为:这个函数的特点是,其输出值总是在0和1之间。这个性质使得Sigmoid函数非常适合用来进行二分类,在机器学习中,它可以将任意实数映射到(0,1)区
- 吴恩达机器学习笔记(2)
python小白22
一.逻辑回归1.什么是逻辑回归?逻辑回归是一种预测变量为离散值0或1情况下的分类问题,在逻辑回归中,假设函数。2.模型描述在假设函数中,,为实数,为Sigmoid函数,也叫Logistic函数。模型解释:,即就是对一个输入,的概率估计。损失函数的理解:所谓最大似然估计,就是我们想知道哪套参数组合对应的曲线最可能拟合我们观测到的数据,也就是该套参数拟合出观测数据的概率最大,而损失函数的要求是预测结果
- statsmodels专栏6——专业洞见:Python中的Statsmodels库高级线性模型
theskylife
数据分析数据挖掘python学习之旅python概率论机器学习数据分析数据挖掘
目录写在前面1广义线性模型(GLM)1.1GLM的基本理念1.2使用Statsmodels进行GLM建模1.2.1使用线性回归1.2.2使用logistic回归处理二分类问题2高级线性混合效应模型2.1高级线性混合效应模型的应用场景2.2利用Statsmodels进行高级线性混合效应建模3泊松回归3.1解释泊松回归的应用场景3.2使用Statsmodels进行泊松回归建模写在最后写在前面在当今数据
- rust的指针作为函数返回值是直接传递,还是先销毁后创建?
wudixiaotie
返回值
这是我自己想到的问题,结果去知呼提问,还没等别人回答, 我自己就想到方法实验了。。
fn main() {
let mut a = 34;
println!("a's addr:{:p}", &a);
let p = &mut a;
println!("p's addr:{:p}", &a
- java编程思想 -- 数据的初始化
百合不是茶
java数据的初始化
1.使用构造器确保数据初始化
/*
*在ReckInitDemo类中创建Reck的对象
*/
public class ReckInitDemo {
public static void main(String[] args) {
//创建Reck对象
new Reck();
}
}
- [航天与宇宙]为什么发射和回收航天器有档期
comsci
地球的大气层中有一个时空屏蔽层,这个层次会不定时的出现,如果该时空屏蔽层出现,那么将导致外层空间进入的任何物体被摧毁,而从地面发射到太空的飞船也将被摧毁...
所以,航天发射和飞船回收都需要等待这个时空屏蔽层消失之后,再进行
&
- linux下批量替换文件内容
商人shang
linux替换
1、网络上现成的资料
格式: sed -i "s/查找字段/替换字段/g" `grep 查找字段 -rl 路径`
linux sed 批量替换多个文件中的字符串
sed -i "s/oldstring/newstring/g" `grep oldstring -rl yourdir`
例如:替换/home下所有文件中的www.admi
- 网页在线天气预报
oloz
天气预报
网页在线调用天气预报
<%@ page language="java" contentType="text/html; charset=utf-8"
pageEncoding="utf-8"%>
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transit
- SpringMVC和Struts2比较
杨白白
springMVC
1. 入口
spring mvc的入口是servlet,而struts2是filter(这里要指出,filter和servlet是不同的。以前认为filter是servlet的一种特殊),这样就导致了二者的机制不同,这里就牵涉到servlet和filter的区别了。
参见:http://blog.csdn.net/zs15932616453/article/details/8832343
2
- refuse copy, lazy girl!
小桔子
copy
妹妹坐船头啊啊啊啊!都打算一点点琢磨呢。文字编辑也写了基本功能了。。今天查资料,结果查到了人家写得完完整整的。我清楚的认识到:
1.那是我自己觉得写不出的高度
2.如果直接拿来用,很快就能解决问题
3.然后就是抄咩~~
4.肿么可以这样子,都不想写了今儿个,留着作参考吧!拒绝大抄特抄,慢慢一点点写!
- apache与php整合
aichenglong
php apache web
一 apache web服务器
1 apeche web服务器的安装
1)下载Apache web服务器
2)配置域名(如果需要使用要在DNS上注册)
3)测试安装访问http://localhost/验证是否安装成功
2 apache管理
1)service.msc进行图形化管理
2)命令管理,配
- Maven常用内置变量
AILIKES
maven
Built-in properties
${basedir} represents the directory containing pom.xml
${version} equivalent to ${project.version} (deprecated: ${pom.version})
Pom/Project properties
Al
- java的类和对象
百合不是茶
JAVA面向对象 类 对象
java中的类:
java是面向对象的语言,解决问题的核心就是将问题看成是一个类,使用类来解决
java使用 class 类名 来创建类 ,在Java中类名要求和构造方法,Java的文件名是一样的
创建一个A类:
class A{
}
java中的类:将某两个事物有联系的属性包装在一个类中,再通
- JS控制页面输入框为只读
bijian1013
JavaScript
在WEB应用开发当中,增、删除、改、查功能必不可少,为了减少以后维护的工作量,我们一般都只做一份页面,通过传入的参数控制其是新增、修改或者查看。而修改时需将待修改的信息从后台取到并显示出来,实际上就是查看的过程,唯一的区别是修改时,页面上所有的信息能修改,而查看页面上的信息不能修改。因此完全可以将其合并,但通过前端JS将查看页面的所有信息控制为只读,在信息量非常大时,就比较麻烦。
- AngularJS与服务器交互
bijian1013
JavaScriptAngularJS$http
对于AJAX应用(使用XMLHttpRequests)来说,向服务器发起请求的传统方式是:获取一个XMLHttpRequest对象的引用、发起请求、读取响应、检查状态码,最后处理服务端的响应。整个过程示例如下:
var xmlhttp = new XMLHttpRequest();
xmlhttp.onreadystatechange
- [Maven学习笔记八]Maven常用插件应用
bit1129
maven
常用插件及其用法位于:http://maven.apache.org/plugins/
1. Jetty server plugin
2. Dependency copy plugin
3. Surefire Test plugin
4. Uber jar plugin
1. Jetty Pl
- 【Hive六】Hive用户自定义函数(UDF)
bit1129
自定义函数
1. 什么是Hive UDF
Hive是基于Hadoop中的MapReduce,提供HQL查询的数据仓库。Hive是一个很开放的系统,很多内容都支持用户定制,包括:
文件格式:Text File,Sequence File
内存中的数据格式: Java Integer/String, Hadoop IntWritable/Text
用户提供的 map/reduce 脚本:不管什么
- 杀掉nginx进程后丢失nginx.pid,如何重新启动nginx
ronin47
nginx 重启 pid丢失
nginx进程被意外关闭,使用nginx -s reload重启时报如下错误:nginx: [error] open() “/var/run/nginx.pid” failed (2: No such file or directory)这是因为nginx进程被杀死后pid丢失了,下一次再开启nginx -s reload时无法启动解决办法:nginx -s reload 只是用来告诉运行中的ng
- UI设计中我们为什么需要设计动效
brotherlamp
UIui教程ui视频ui资料ui自学
随着国际大品牌苹果和谷歌的引领,最近越来越多的国内公司开始关注动效设计了,越来越多的团队已经意识到动效在产品用户体验中的重要性了,更多的UI设计师们也开始投身动效设计领域。
但是说到底,我们到底为什么需要动效设计?或者说我们到底需要什么样的动效?做动效设计也有段时间了,于是尝试用一些案例,从产品本身出发来说说我所思考的动效设计。
一、加强体验舒适度
嗯,就是让用户更加爽更加爽的用你的产品。
- Spring中JdbcDaoSupport的DataSource注入问题
bylijinnan
javaspring
参考以下两篇文章:
http://www.mkyong.com/spring/spring-jdbctemplate-jdbcdaosupport-examples/
http://stackoverflow.com/questions/4762229/spring-ldap-invoking-setter-methods-in-beans-configuration
Sprin
- 数据库连接池的工作原理
chicony
数据库连接池
随着信息技术的高速发展与广泛应用,数据库技术在信息技术领域中的位置越来越重要,尤其是网络应用和电子商务的迅速发展,都需要数据库技术支持动 态Web站点的运行,而传统的开发模式是:首先在主程序(如Servlet、Beans)中建立数据库连接;然后进行SQL操作,对数据库中的对象进行查 询、修改和删除等操作;最后断开数据库连接。使用这种开发模式,对
- java 关键字
CrazyMizzz
java
关键字是事先定义的,有特别意义的标识符,有时又叫保留字。对于保留字,用户只能按照系统规定的方式使用,不能自行定义。
Java中的关键字按功能主要可以分为以下几类:
(1)访问修饰符
public,private,protected
p
- Hive中的排序语法
daizj
排序hiveorder byDISTRIBUTE BYsort by
Hive中的排序语法 2014.06.22 ORDER BY
hive中的ORDER BY语句和关系数据库中的sql语法相似。他会对查询结果做全局排序,这意味着所有的数据会传送到一个Reduce任务上,这样会导致在大数量的情况下,花费大量时间。
与数据库中 ORDER BY 的区别在于在hive.mapred.mode = strict模式下,必须指定 limit 否则执行会报错。
- 单态设计模式
dcj3sjt126com
设计模式
单例模式(Singleton)用于为一个类生成一个唯一的对象。最常用的地方是数据库连接。 使用单例模式生成一个对象后,该对象可以被其它众多对象所使用。
<?phpclass Example{ // 保存类实例在此属性中 private static&
- svn locked
dcj3sjt126com
Lock
post-commit hook failed (exit code 1) with output:
svn: E155004: Working copy 'D:\xx\xxx' locked
svn: E200031: sqlite: attempt to write a readonly database
svn: E200031: sqlite: attempt to write a
- ARM寄存器学习
e200702084
数据结构C++cC#F#
无论是学习哪一种处理器,首先需要明确的就是这种处理器的寄存器以及工作模式。
ARM有37个寄存器,其中31个通用寄存器,6个状态寄存器。
1、不分组寄存器(R0-R7)
不分组也就是说说,在所有的处理器模式下指的都时同一物理寄存器。在异常中断造成处理器模式切换时,由于不同的处理器模式使用一个名字相同的物理寄存器,就是
- 常用编码资料
gengzg
编码
List<UserInfo> list=GetUserS.GetUserList(11);
String json=JSON.toJSONString(list);
HashMap<Object,Object> hs=new HashMap<Object, Object>();
for(int i=0;i<10;i++)
{
- 进程 vs. 线程
hongtoushizi
线程linux进程
我们介绍了多进程和多线程,这是实现多任务最常用的两种方式。现在,我们来讨论一下这两种方式的优缺点。
首先,要实现多任务,通常我们会设计Master-Worker模式,Master负责分配任务,Worker负责执行任务,因此,多任务环境下,通常是一个Master,多个Worker。
如果用多进程实现Master-Worker,主进程就是Master,其他进程就是Worker。
如果用多线程实现
- Linux定时Job:crontab -e 与 /etc/crontab 的区别
Josh_Persistence
linuxcrontab
一、linux中的crotab中的指定的时间只有5个部分:* * * * *
分别表示:分钟,小时,日,月,星期,具体说来:
第一段 代表分钟 0—59
第二段 代表小时 0—23
第三段 代表日期 1—31
第四段 代表月份 1—12
第五段 代表星期几,0代表星期日 0—6
如:
*/1 * * * * 每分钟执行一次。
*
- KMP算法详解
hm4123660
数据结构C++算法字符串KMP
字符串模式匹配我们相信大家都有遇过,然而我们也习惯用简单匹配法(即Brute-Force算法),其基本思路就是一个个逐一对比下去,这也是我们大家熟知的方法,然而这种算法的效率并不高,但利于理解。
假设主串s="ababcabcacbab",模式串为t="
- 枚举类型的单例模式
zhb8015
单例模式
E.编写一个包含单个元素的枚举类型[极推荐]。代码如下:
public enum MaYun {himself; //定义一个枚举的元素,就代表MaYun的一个实例private String anotherField;MaYun() {//MaYun诞生要做的事情//这个方法也可以去掉。将构造时候需要做的事情放在instance赋值的时候:/** himself = MaYun() {*
- Kafka+Storm+HDFS
ssydxa219
storm
cd /myhome/usr/stormbin/storm nimbus &bin/storm supervisor &bin/storm ui &Kafka+Storm+HDFS整合实践kafka_2.9.2-0.8.1.1.tgzapache-storm-0.9.2-incubating.tar.gzKafka安装配置我们使用3台机器搭建Kafk
- Java获取本地服务器的IP
中华好儿孙
javaWeb获取服务器ip地址
System.out.println("getRequestURL:"+request.getRequestURL());
System.out.println("getLocalAddr:"+request.getLocalAddr());
System.out.println("getLocalPort:&quo