运输问题 |
||
|
||
description |
||
W公司有m个仓库和n 个零售商店。第i 个仓库有ai 个单位的货物;第j 个零售商店需要bj个单位的货物。货物供需平衡,即。从第i 个仓库运送每单位货物到第j 个零售商店的费用为Cij 。试设计一个将仓库中所有货物运送到零售商店的运输方案,使总运输费用最少。
对于给定的m 个仓库和n 个零售商店间运送货物的费用,计算最优运输方案和最差运输方案。
|
||
input |
||
多组数据输入.
每组输入第1行有2 个正整数m和n,分别表示仓库数和零售商店数。接下来的一行中有m个正整数ai ,1≤i≤m,表示第i个仓库有ai 个单位的货物。再接下来的一行中有n个正整数bj ,1≤j≤n,表示第j个零售商店需要bj 个单位的货物。接下来的m行,每行有n个整数,表示从第i 个仓库运送每单位货物到第j个零售商店的费用Cij 。
|
||
output |
||
每组输出最少运输费用和最多运输费用
|
||
sample_input |
||
2 3
220 280
170 120 210
77 39 105
150 186 122
|
||
sample_output |
||
48500
69140 |
【问题分析】
费用流问题。
【建模方法】
把所有仓库看做二分图中顶点Xi,所有零售商店看做二分图中顶点Yi,建立附加源S汇T。
1、从S向每个Xi连一条容量为仓库中货物数量ai,费用为0的有向边。
2、从每个Yi向T连一条容量为商店所需货物数量bi,费用为0的有向边。
3、从每个Xi向每个Yj连接一条容量为无穷大,费用为cij的有向边。
求最小费用最大流,最小费用流值就是最少运费,求最大费用最大流,最大费用流值就是最多运费。
【建模分析】
把每个仓库想象成一个中转站,由源点运来ai单位货物,运费为0,每个商店也为一个中转站,运向目标汇点bi单位货物。每个仓库和零售商店之间有一条道路,容量为无穷大,费用为单位运费cij。求从源点到汇点的费用流,就是运费。
----------------------------------------------------------------------------------------------
#include <iostream> #include <cstdio> using namespace std; const int OO=1e9;//无穷大 const int maxm=1111111;//边的最大数量,为原图的两倍 const int maxn=2222;//点的最大数量 int node,src,dest,edge;//node节点数,src源点,dest汇点,edge边数 int head[maxn],p[maxn],dis[maxn],q[maxn],vis[maxn];//head链表头,p记录可行流上节点对应的反向边,dis计算距离 struct edgenode { int to;//边的指向 int flow;//边的容量 int cost;//边的费用 int next;//链表的下一条边 } edges[maxm]; void prepare(int _node,int _src,int _dest); void addedge(int u,int v,int f,int c); bool spfa(); inline int min(int a,int b) { return a<b?a:b; } inline void prepare(int _node,int _src,int _dest) { node=_node; src=_src; dest=_dest; for (int i=0; i<node; i++) { head[i]=-1; vis[i]=false; } edge=0; } void addedge(int u,int v,int f,int c) { edges[edge].flow=f; edges[edge].cost=c; edges[edge].to=v; edges[edge].next=head[u]; head[u]=edge++; edges[edge].flow=0; edges[edge].cost=-c; edges[edge].to=u; edges[edge].next=head[v]; head[v]=edge++; } bool spfa() { int i,u,v,l,r=0,tmp; for (i=0; i<node; i++) dis[i]=OO; dis[q[r++]=src]=0; p[src]=p[dest]=-1; for (l=0; l!=r; ((++l>=maxn)?l=0:1)) { for (i=head[u=q[l]],vis[u]=false; i!=-1; i=edges[i].next) { if (edges[i].flow&&dis[v=edges[i].to]>(tmp=dis[u]+edges[i].cost)) { dis[v]=tmp; p[v]=i^1; if (vis[v]) continue; vis[q[r++]=v]=true; if (r>=maxn) r=0; } } } return p[dest]>=0; } int spfaflow() { int i,ret=0,delta; while (spfa()) { //按记录原路返回求流量 for (i=p[dest],delta=OO; i>=0; i=p[edges[i].to]) { delta=min(delta,edges[i^1].flow); } for (int i=p[dest]; i>=0; i=p[edges[i].to]) { edges[i].flow+=delta; edges[i^1].flow-=delta; } ret+=delta*dis[dest]; } return ret; } int n,m; int a[1111]; int b[1111]; int c[1111][1111]; int main() { while (~scanf("%d%d",&m,&n)) { prepare(m+n+2,0,m+n+1); for (int i=1;i<=m;i++) { scanf("%d",&a[i]); addedge(src,i,a[i],0); } for (int i=1;i<=n;i++) { scanf("%d",&b[i]); addedge(i+m,dest,b[i],0); } for (int i=1;i<=m;i++) { for (int j=1;j<=n;j++) { scanf("%d",&c[i][j]); addedge(i,j+m,OO,c[i][j]); } } printf("%d\n",spfaflow()); prepare(m+n+2,0,m+n+1); for (int i=1;i<=m;i++) { addedge(src,i,a[i],0); } for (int i=1;i<=n;i++) { addedge(i+m,dest,b[i],0); } for (int i=1;i<=m;i++) { for (int j=1;j<=n;j++) { addedge(i,j+m,OO,-c[i][j]); } } printf("%d\n",-spfaflow()); } return 0; }