让我们来看看SensorManager的代码
SensorManager框架层代码
@frameworks/base/core/java/android/hardware/SensorManager.java
public SensorManager(Looper mainLooper) { mMainLooper = mainLooper; // 上面说了,这是Activity的Looper synchronized(sListeners) { if(!sSensorModuleInitialized) { sSensorModuleInitialized = true; nativeClassInit(); // 好像是调用本地方法初始化 sWindowManager = IWindowManager.Stub.asInterface( ServiceManager.getService("window")); // 获得Windows服务,不管它 if (sWindowManager != null) { // if it's null we're running in the system process // which won't get the rotated values try { sRotation = sWindowManager.watchRotation( newIRotationWatcher.Stub() { public voidonRotationChanged(int rotation) { SensorManager.this.onRotationChanged(rotation); } } ); } catch (RemoteException e) { } } // initialize the sensor list sensors_module_init(); // 初始化sensor module final ArrayList<Sensor> fullList = sFullSensorsList; // SensorManager维护的Sensor列表 int i = 0; do { Sensor sensor = new Sensor(); // 创建sensor对象,这个是传递给App的哦 //调用module的方法,获得每一个sensor设备 i = sensors_module_get_next_sensor(sensor, i); if (i>=0) { //Log.d(TAG, "found sensor: " + sensor.getName() + // ", handle=" +sensor.getHandle()); sensor.setLegacyType(getLegacySensorType(sensor.getType())); fullList.add(sensor); // 添加到SM维护的Sensor列表(嘿嘿) sHandleToSensor.append(sensor.getHandle(), sensor); } }while (i>0); sPool= new SensorEventPool( sFullSensorsList.size()*2 ); sSensorThread = new SensorThread(); // 哟,创建线程了好像 } } }
很明显nativeClassInit(),sensors_module_init(),sensors_module_get_next_sensor()都是本地实现的方法。
private static native void nativeClassInit(); private static native int sensors_module_init(); private static native intsensors_module_get_next_sensor(Sensor sensor, int next);
根据之前看代码的经验可知,很可能在frameworks/base/core/对应一个jni目录下的存在其对应的本地代码:
frameworks/base/core/java/android/hardware/SensorManager.java frameworks/base/core/jni/android_hardware_SensorManager.cpp
果不其然,在jni存在其本地代码,让我们来看下nativeClassInit函数:
@frameworks/base/core/jni/android_hardware_SensorManager.cpp
static void nativeClassInit (JNIEnv *_env, jclass _this) { jclasssensorClass = _env->FindClass("android/hardware/Sensor"); SensorOffsets& sensorOffsets = gSensorOffsets; sensorOffsets.name =_env->GetFieldID(sensorClass, "mName", "Ljava/lang/String;"); sensorOffsets.vendor =_env->GetFieldID(sensorClass, "mVendor", "Ljava/lang/String;"); sensorOffsets.version =_env->GetFieldID(sensorClass, "mVersion", "I"); sensorOffsets.handle =_env->GetFieldID(sensorClass, "mHandle", "I"); sensorOffsets.type = _env->GetFieldID(sensorClass,"mType", "I"); sensorOffsets.range =_env->GetFieldID(sensorClass, "mMaxRange", "F"); sensorOffsets.resolution =_env->GetFieldID(sensorClass, "mResolution","F"); sensorOffsets.power =_env->GetFieldID(sensorClass, "mPower", "F"); sensorOffsets.minDelay =_env->GetFieldID(sensorClass, "mMinDelay", "I"); }
其代码比较简单,将Java框架层的Sensor类中的成员保存在本地代码中的gSensorOffsets 结构体中将来使用。
sensors_module_init()本地方法的实现:
static jint sensors_module_ini(JNIEnv *env, jclass clazz) { SensorManager::getInstance(); return 0; }
在本地代码中调用了SensorManager的getInstance方法,这又是一个典型的单例模式获得类的对象,注意这儿的SensorManager是本地的类,而不是Java层的SensorManager类。
本地SensorManager的定义
@frameworks/base/include/gui/SensorManager.h
class SensorManager : publicASensorManager, publicSingleton<SensorManager> { public: SensorManager(); ~SensorManager(); ssize_tgetSensorList(Sensor const* const** list) const; Sensor const*getDefaultSensor(int type); sp<SensorEventQueue> createEventQueue(); private: //DeathRecipient interface voidsensorManagerDied(); status_tassertStateLocked() const; private: mutable MutexmLock; mutablesp<ISensorServer> mSensorServer; mutableSensor const** mSensorList; mutableVector<Sensor> mSensors; mutablesp<IBinder::DeathRecipient> mDeathObserver; };
注意SensorManager又继承了ASensorManager和泛型类Singleton<SensorManager>,而SensorManager类定义里没有getInstance所以其定义肯定是在ASensorManager或Singleton中。
@frameworks/base/include/utils/Singleton.h
template <typename TYPE> class ANDROID_API Singleton { public: staticTYPE& getInstance() { Mutex::Autolock _l(sLock); TYPE*instance = sInstance; if(instance == 0) { instance = new TYPE(); sInstance = instance; } return*instance; } static boolhasInstance() { Mutex::Autolock _l(sLock); returnsInstance != 0; } protected: ~Singleton(){ }; Singleton() {}; private: Singleton(const Singleton&); Singleton& operator = (const Singleton&); static MutexsLock; static TYPE*sInstance; }; //--------------------------------------------------------------------------- }; // namespace android第一次调用getInstance方法时,创建泛型对象即:SensorManager,随后再调用该方法时返回第一次创建的泛型对象。
本地SensorManager是一个单例模式,其构造方法相对比较简单,它的主要工作交给了assertStateLocked方法:
@frameworks/base/libs/gui/SensorManager.cpp
SensorManager::SensorManager() :mSensorList(0) { // okay we'renot locked here, but it's not needed during construction assertStateLocked(); } status_t SensorManager::assertStateLocked() const { if(mSensorServer == NULL) { // try for one second constString16 name("sensorservice"); for (inti=0 ; i<4 ; i++) { status_t err = getService(name,&mSensorServer); if(err == NAME_NOT_FOUND) { usleep(250000); continue; } if(err != NO_ERROR) { return err; } break; } classDeathObserver : public IBinder::DeathRecipient { SensorManager& mSensorManger; virtual void binderDied(const wp<IBinder>& who) { LOGW("sensorservice died [%p]", who.unsafe_get()); mSensorManger.sensorManagerDied(); } public: DeathObserver(SensorManager& mgr) : mSensorManger(mgr) { } }; mDeathObserver = new DeathObserver(*const_cast<SensorManager*>(this)); mSensorServer->asBinder()->linkToDeath(mDeathObserver); mSensors= mSensorServer->getSensorList(); size_tcount = mSensors.size(); mSensorList = (Sensor const**)malloc(count * sizeof(Sensor*)); for(size_t i=0 ; i<count ; i++) { mSensorList[i] = mSensors.array() + i; } } returnNO_ERROR; }
在assertStateLocked方法里,先通过getService获得SensorService对象,然后注册了对SensorService的死亡监听器,SensorManager与SensorService不求同年同月同日,只求同年同月同日死。拜完了兄弟之后,调用getSensorList得到所有传感器的对象,存放到mSensorList中,保存在本地空间里。
在上面函数调用中首先调用getService来获得SensorService服务,然后执行mSensorServer->getSensorList来获得服务提供的传感器列表:
Vector<Sensor> SensorService::getSensorList() { return mUserSensorList; }
大家要注意啊,上面的getSensorList函数只是返回了mUserSensorList,而这个变量是在什么时候初始化的呢?
根据2.1节可知,SensorService在本地被初始化时,构造函数里并没有对mUserSensorList进行初始化,而SensorService里有一个onFirstRef方法,这个方法当SensorService第一次被强引用时被自动调用。那SensorService第一次被强引用是在什么时候呢?
在SensorManager::assertStateLocked方法里调用getService获得SensorService保存到mSensorServer成员变量中。
mSensorServer的定义在frameworks/base/include/gui/SensorManager.h中:
class SensorManager : public ASensorManager, public Singleton<SensorManager> { mutable sp<ISensorServer>mSensorServer; mutable Sensorconst** mSensorList; mutable Vector<Sensor> mSensors; };
可以看出mSensroServer为强引用类型。所以在创建本地中的SensorManager类对象时,自动强引用SensorService,自动调用onFirstRef方法:
@frameworks/base/services/sensorservice/SensorService.cpp的onFirstRef简化方法如下:
void SensorService::onFirstRef() { LOGD("nuSensorService starting..."); SensorDevice& dev(SensorDevice::getInstance()); //创建SensorDevice对象dev if(dev.initCheck() == NO_ERROR) { sensor_tconst* list; ssize_tcount = dev.getSensorList(&list); //获得传感器设备列表 if (count> 0) { … for(ssize_t i=0 ; i<count ; i++) { registerSensor( new HardwareSensor(list[i]) ); // 注册在本地获得的传感器 … } constSensorFusion& fusion(SensorFusion::getInstance()); if(hasGyro) { // 如果有陀螺仪设备,则先注册和陀螺仪有关的虚拟传感器设备 registerVirtualSensor( newRotationVectorSensor() ); // 虚拟旋转传感器 registerVirtualSensor( new GravitySensor(list, count) ); // 虚拟重力传感器 registerVirtualSensor( new LinearAccelerationSensor(list, count) ); // 虚拟加速器 // these are optional registerVirtualSensor( new OrientationSensor() ); // 虚拟方向传感器 registerVirtualSensor( new CorrectedGyroSensor(list, count) ); // 真正陀螺仪 // virtual debugging sensors... char value[PROPERTY_VALUE_MAX]; property_get("debug.sensors", value, "0"); if (atoi(value)) { registerVirtualSensor( new GyroDriftSensor() ); // 虚拟陀螺测漂传感器 } } // build the sensor list returned tousers mUserSensorList = mSensorList; if(hasGyro && (virtualSensorsNeeds & (1<<SENSOR_TYPE_ROTATION_VECTOR))) { // if we have the fancy sensor fusion, and it's not provided by the // HAL, use our own (fused) orientation sensor by removing the // HAL supplied one form the user list. if (orientationIndex >= 0) { mUserSensorList.removeItemsAt(orientationIndex); } } run("SensorService",PRIORITY_URGENT_DISPLAY); mInitCheck = NO_ERROR; } } }
上面代码首先通过SensorDevice::getInstance()创建对象dev,调用dev.getSensorList(&list)获得传感器列表,将取出的sensor_t类型list传感器列表,塑造了HardwareSensor对象,传递给了registerSensor方法,通过registerSensor注册传感器,然后通过单例模型创建了SensorFusion对象,创建并注册了一系列的虚拟传感器,疑惑,极大的疑惑,怎么传感器还有虚拟的??其实你注意看这几个传感器最前面的条件,if(hasGyro),表示如果存在陀螺仪的话,会创建这些虚拟设备,再看这些虚拟设备:旋转,重力,加速器,方向等,这些设备都对应一个物理硬件:陀螺仪,所以这些逻辑上存在,物理上不存在的设备叫虚拟设备。在初始化了虚拟设备后,将mSensorList传感器列表赋值给mUserSensorList,mSensorList是由registerSensor初始化的,mUserSensorList是要提交给Java框架层的传感器列表,最后通过run方法运行了SensorService线程,我们先来看下registerSensor的代码:
void SensorService::registerSensor(SensorInterface* s) { sensors_event_t event; memset(&event,0, sizeof(event)); const Sensorsensor(s->getSensor()); // add to thesensor list (returned to clients) mSensorList.add(sensor); // add to ourhandle->SensorInterface mapping mSensorMap.add(sensor.getHandle(), s); // create anentry in the mLastEventSeen array mLastEventSeen.add(sensor.getHandle(), event); }
通过分析上面代码可知,将传入的HardwareSensor对象塑造了Sensor,添加到mSensorList向量表里,然后将HardwareSensor对象添加到mSensroMap键值对里,将新建的传感器事件数据封装对象event添加到mLastEventSeen键值对中。
我们通过下面的时序图来看下Sensor列表的获取过程。让我们再来看看SensorService线程,还记得前面SensorService的父类中有一个Thread类,当调用run方法时会创建线程并调用threadLoop方法。
bool SensorService::threadLoop() { LOGD("nuSensorService thread starting..."); const size_tnumEventMax = 16 * (1 + mVirtualSensorList.size()); sensors_event_t buffer[numEventMax]; sensors_event_t scratch[numEventMax]; SensorDevice& device(SensorDevice::getInstance()); const size_tvcount = mVirtualSensorList.size(); ssize_tcount; do { // 调用SensorDevice的poll方法看样子要多路监听了 count = device.poll(buffer,numEventMax); if(count<0) { LOGE("sensor poll failed (%s)", strerror(-count)); break; } // 记录poll返回的每一个传感器中的最后一个数据信息到mLastEventSeen中 recordLastValue(buffer, count); // handlevirtual sensors 处理虚拟传感器数据 if (count&& vcount) { sensors_event_t const * const event = buffer; // 获得虚拟传感器列表 constDefaultKeyedVector<int, SensorInterface*> virtualSensors( getActiveVirtualSensors()); constsize_t activeVirtualSensorCount = virtualSensors.size(); // 虚拟传感器个数 if(activeVirtualSensorCount) { size_t k = 0; SensorFusion& fusion(SensorFusion::getInstance()); if (fusion.isEnabled()) { for (size_t i=0 ; i<size_t(count) ; i++) { fusion.process(event[i]); //处理虚拟传感器设备事件 } } for (size_t i=0 ; i<size_t(count) ; i++) { for (size_t j=0 ; j<activeVirtualSensorCount ; j++) { sensors_event_t out; if (virtualSensors.valueAt(j)->process(&out, event[i])) { buffer[count + k] =out; k++; } } } if (k) { // record the last synthesized values recordLastValue(&buffer[count], k); count += k; // sort the buffer by time-stamps sortEventBuffer(buffer, count); } } } // sendour events to clients... // 获得传感器连接对象列表 constSortedVector< wp<SensorEventConnection> > activeConnections( getActiveConnections()); size_tnumConnections = activeConnections.size(); for(size_t i=0 ; i<numConnections ; i++) { sp<SensorEventConnection> connection( activeConnections[i].promote()); if(connection != 0) { // 向指定的传感器连接客户端发送传感器数据信息 connection->sendEvents(buffer, count, scratch); } } } while (count>= 0 || Thread::exitPending()); // 传感器循环监听线程 LOGW("Exiting SensorService::threadLoop => aborting..."); abort(); return false; }
我们看到device.poll方法,阻塞在了SensorDevice的poll方法上,它肯定就是读取Sensor硬件上的数据了,将传感器数据保存在buff中,然后调用recordLastValue方法,只保存同一类型传感器的最新数据(最后采集的一组数据)到键值对象mLastEventSeen里对应传感器的值域中。如果传感器设备是虚拟设备则调用SensorFusion.Process()方法对虚拟设备数据进行处理。SensorFusion关联一个SensorDevice,它是虚拟传感器设备的一个加工类,负责虚拟传感器数据的计算、处理、设备激活、设置延迟、获得功耗信息等操作。
让我们来回顾下整个过程吧。
1. SensorManager对象创建并调用assertStateLocked方法
2. 在assertStateLocked方法中调用getService,获得SensorService服务
3. 当SensorService第一次强引用时,自动调用OnFirstRef方法
4.获得SensorDevice单例对象
6. 调用SensorDevice.getSensorList方法sensor_t列表保存在SensorService中
8. 调用registerSensor注册传感器,添加到mSensorList列表中
9. 启动SensorService线程,准备监听所有注册的传感器设备
12. 多路监听注册的传感器设备,当有传感器事件时,返回sensor_event_t封装的事件信息
16. 记录产生传感器事件的设备信息
17. 调用getActiveConnections获得所有的活动的客户端SensorEventConnection类对象
19.向客户端发送传感器事件信息