- 【费马小定理】【欧拉定理】【扩展欧拉定理】及其证明
syzyc
数论数论
费马小定理&欧拉定理及其证明注:此文所提到的“整数”“素数”等均指正数费马小定理对于一个素数ppp,任意整数aaa,若gcd(a,p)=1\gcd(a,p)=1gcd(a,p)=1(即aaa,ppp互质),则:ap−1≡1(modp)a^{p-1}\equiv1\pmod{p}ap−1≡1(modp)证明先找出所有小于等于ppp的与ppp互质的正整数,为序列A={1,2,3,…,p−1}A=\{
- 五、AIGC大模型_08Agent基础知识
学不会lostfound
AI人工智能agent不同生命周期的知识用AI处理AIGC
0、概述根据知识的生命周期分类,我们通常会采取不同的方法(微调、RAG、Agent)来将知识融入到AI中0.1长生命周期知识这类知识通常具有较高的稳定性和通用性,不会因时间的推移而轻易改变。它们是知识体系中的“基石”,在较长时间内保持有效性和价值。特点:稳定性强:如数学定理、物理公式等,这些知识经过长期验证,具有高度的确定性和普适性基础性强:往往是学习和研究其他知识的基础,例如教科书中的基础知识更
- 计算机视觉(Computer Vision, CV)的入门到实践的详细学习路线
云梦优选
计算机数据库大数据计算机视觉学习人工智能
一、基础准备1.数学基础线性代数深入矩阵运算,理解矩阵乘法、转置、逆等基本概念。掌握特征值与特征向量的几何意义,理解其在图像压缩、特征提取中的应用。学习奇异值分解(SVD)及其在降维和数据压缩中的具体应用。概率与统计熟悉贝叶斯定理及其在分类任务中的应用,如朴素贝叶斯分类器。理解常见概率分布(如正态分布、二项分布)及其性质。学习统计推断方法,如假设检验、置信区间估计,以评估模型性能。微积分掌握梯度、
- 即插即用模块--KANLinear
苏格拉没有鞋底
模型训练深度学习人工智能python
KAN网络KAN网络即Kolmogorov-Arnold网络,是一类基于Kolmogorov-Arnold表示定理的神经网络架构,具有强大的非线性表达能力。在相同迭代次数下超越传统MLP,不仅训练速度更快,收敛性更好,而且在拟合复杂函数时的精度也明显提高。这是一个即插即用模块–KANLinear,使用时import这个代码文件,然后模型中的nn.Linear换成这个KANLinear即可impor
- 一个数如果恰好等于它的因子之和,这个数就称为“完数“。例如6=1+2+3.编程找出1000以内的所有完数。-多语言
赔罪
Practicequestions算法javac语言javascriptpython
目录C语言实现Python实现Java实现Js实现题目:一个数如果恰好等于它的因子之和,这个数就称为"完数"。例如6=1+2+3.编程找出1000以内的所有完数。完数(PerfectNumber)是一个正整数,它等于其所有正因子(不包括自身)的和。换句话说,如果一个数n的所有正因子(除了n本身)相加的结果等于n,那么n就是一个完数。完数的性质完数是稀有的,已知的完数都是偶数。根据欧几里得的定理,完
- 用 Verilog 实现 0 到 18 计数器:从原理到实践的全解析
君临天下.鑫
modelsim波形仿真verilogfpga开发课程设计经验分享笔记编辑器
在数字电路设计中,计数器是极为重要的基础部件,广泛应用于各类数字系统。本次实验聚焦于设计一个从0到18计数的计数器,通过深入探索计数器的工作原理、利用组合逻辑控制计数范围,进一步加深对数字电路和Verilog语言的理解与应用。一、实验目的理解计数器通用原理:全面掌握计数器的基本工作原理,包括计数的方式、状态的转换以及与外部信号的交互等,为设计特定功能的计数器奠定理论基础。运用组合逻辑控制计数范围:
- 机器学习_重要知识点整理
嘉羽很烦
机器学习机器学习
机器学习重要知识点整理一、数学与理论基础1.概率与统计术语作用使用场景概率分布描述随机变量的取值概率,如正态分布、二项分布。数据建模(如高斯分布假设)、生成模型(如贝叶斯网络)。贝叶斯定理计算条件概率,更新先验知识以获得后验概率。贝叶斯分类器、文本分类(如垃圾邮件检测)。最大似然估计(MLE)通过数据最大化似然函数,估计模型参数。线性回归、逻辑回归参数估计。假设检验判断假设是否成立(如t检验、卡方
- 【从零开始学习计算机科学】数据库系统(十一)云数据库、NoSQL 与 NewSQL
贫苦游商
数据库学习nosqlnewsql云数据库CAPsql
【从零开始学习计算机科学】数据库系统(十一)云数据库、NoSQL与NewSQL云数据库云服务器的服务云数据库和传统的分布式数据库的异同NoSQLNoSQL数据库的特点CAP定理NoSQL的特性NoSQL数据库的分类NoSQL的适用场景Nosql数据库实例-RedisRedis的优势MongoDBMongoDB的特点NewSQLNewSQL出现的背景NewSQL(新型分布式数据库)的概念NewSQL
- 分布式架构的 CAP 定理、BASE 理论及其应用教程
宋发元
分布式架构
分布式架构的CAP定理、BASE理论及其应用教程在构建分布式系统时,数据一致性、系统可用性和网络分区容忍性是三个核心关注点。CAP定理和BASE理论为我们提供了指导原则,帮助在系统设计中进行合理权衡。本文将深入解析CAP定理和BASE理论,并结合实际应用案例,帮助你掌握在分布式架构中的应用策略。1.CAP定理:分布式系统的权衡法则1.1CAP定理概述CAP定理由EricBrewer提出,指出在一个
- CF576A Vasya and Petya‘s Game 题解
W9095
算法学习笔记c++
CF576AVasyaandPetya’sGame数论思维题。根据唯一分解定理,可以知道,如果一个数的各个质因数的数量确定了,这个数也就确定了。每次询问的中,如果xxx是yyy的倍数,证明xxx中含yyy的所有质因数。我们可以枚举质数,判定xxx能否整除这个质数,就可以判断xxx是否含有这个质因数。但是这还不能完全确定xxx,因为这样只能确定是否有某个质因数,而不能确定质因数的数量。为了确定质因数
- 【人工智能数学基础】——深入详解贝叶斯理论:掌握贝叶斯定理及其在分类和预测中的应用
猿享天开
人工智能数学基础专讲分类数据挖掘人工智能贝叶斯数学
深入详解贝叶斯理论:掌握贝叶斯定理及其在分类和预测中的应用贝叶斯理论(BayesianTheory)是概率论和统计学中的一个重要分支,它以托马斯·贝叶斯(ThomasBayes)命名,主要关注如何根据新的证据更新对某一事件的信念。贝叶斯定理作为贝叶斯理论的核心,在机器学习、数据分析、决策科学等多个领域中具有广泛的应用。本文将深入探讨贝叶斯定理的理论基础、数学表达及其在分类和预测中的应用,辅以实例和
- Zookeeper【概念(集中式到分布式、什么是分布式 、CAP定理 、什么是Zookeeper、应用场景、为什么选择Zookeeper 、基本概念) 】(一)-全面详解(学习总结---从入门到深化)
童小纯
中间件大全---全面详解zookeeper分布式
作者简介:大家好,我是小童,Java开发工程师,CSDN博客博主,Java领域新星创作者系列专栏:前端、Java、Java中间件大全、微信小程序、微信支付、若依框架、Spring全家桶如果文章知识点有错误的地方,请指正!和大家一起学习,一起进步如果感觉博主的文章还不错的话,请三连支持一下博主哦博主正在努力完成2023计划中:以梦为马,扬帆起航,2023追梦人目录Zookeeper概念_集中式到分布
- 王阳明代数讲义
花间流风
明明德数域王船山熵群与王阳明代数算法情感分析矩阵
王阳明代数讲义王阳明代数讲义古代代数学的发展中世纪与文艺复兴时期的代数学近代代数学的发展现代代数学的发展第一章意气实体过程讲义第二章情感分析与和悦空间的定义第三章王阳明代数的基本概念与定理第四章王阳明代数在问题解决中的应用第五章王阳明代数与情感分析、社会关系力学的结合第六章王阳明代数的数学基础与哲学思考第七章王阳明代数的未来研究方向与展望王阳明代数讲义前言王阳明哲学思想简述王阳明,名守仁,字伯安,
- 01计算机视觉学习计划
依旧阳光的老码农
计算机视觉计算机视觉人工智能
计算机视觉系统学习计划(3-6个月)本计划按照数学→编程→图像处理→机器学习→深度学习→3D视觉→项目实战的顺序,确保从基础到高级,结合理论和实践。第一阶段(第1-2个月):基础夯实✅目标:掌握数学基础、Python/C++编程、基本图像处理1️⃣数学基础(2周)每日2小时线性代数:矩阵运算、特征值分解(推荐《线性代数及其应用》)概率统计:高斯分布、贝叶斯定理微积分:偏导数、梯度下降傅里叶变换:图
- 从单块巨石到星辰大海:分布式与微服务的本质思考
斗-匕
分布式微服务架构
一、分布式系统:宇宙观的代码映射1.核心命题的进化单机时代(1960s-2000s):冯·诺依曼架构的终极演绎,摩尔定律撑起性能天花板分布式觉醒(2000s-):CAP定理的启示——放弃"完美系统"的幻想,在妥协中寻找最优解2.分布式三定律物理定律:光速限制下的通信延迟不可消除经济定律:成本边际效应决定拆分粒度组织定律:康威定律的幽灵始终在场(系统架构≈组织架构)3.典型范式对比模式特征案例主从架
- 中值定理总结_微分中值定理大总结
知乎圈子
中值定理总结
晚上好,今天对零零散散的微分中值定理做一个总结。微分中值定理不是一个定理,而是对罗尔定理、拉格朗日中值定理、柯西中值定理的总称,下面分别来看。一:罗尔定理设函数f(x)满足以下条件:(1)在闭区间[a,b]上连续;(2)在开区间(a,b)内可导;(3)在区间两端点处的函数值相等,即f(a)=f(b).那么至少存在一点ε∈(a,b),使得函数在该点处的导数为零,即f'(ε)=0.通常称导数等于零的点
- 【高等数学&学习记录】微分中值定理
测工
高等数学学习高等数学
一、知识点(一)罗尔定理费马引理设函数f(x)f(x)f(x)在点x0x_0x0的某邻域U(x0)U(x_0)U(x0)内有定义,并且在x0x_0x0处可导,如果对任意的x∈U(x0)x\inU(x_0)x∈U(x0),有f(x)≤f(x0)f(x)\leqf(x_0)f(x)≤f(x0)(或f(x)≥f(x0)f(x)\geqf(x_0)f(x)≥f(x0)),那么f′(x0)=0f'(x_0)
- 第六讲 中值定理、微分等式与微分不等式
Fan_558
考研笔记经验分享
前言这里记录我考研数学复习中的复习规范,通过文章格式严格要求自己每一章需要完成到什么程度,以及对我的复习提供一些帮助听课评估这一章主要内容是中值定理、微分等式与微分不等式等证明题,学这一讲花了大概一个星期,一开始的拉格朗日、罗尔、泰勒等证明根本搞不明白,后面还是靠多刷了两遍例题掌握的。微分等式与微分不等式比较简单,但是计算量比较大概念理解与记忆中值定理微分等式与不等式例题理解刷题收获与学习评估以下
- 分布式基本理论 - CAP,BASE 和 RAFT 算法
Yellow明
算法分布式
分布式基本理论-CAP,BASE和RAFT算法1.分布式基本理论1.1CAP理论在理论计算机科学中,CAP定理(CAPtheorem),又被称作布鲁尔定理(Brewer’stheorem),它指出对于一个分布式计算系统来说,不可能同时满足以下三点:[1][2]一致性(Consistency)(等同于所有节点访问同一份最新的数据副本)可用性(Availability)(每次请求都能获取到非错的响应—
- 分布式事务 CAP三进二和Base定理
柿子加油努力
DistributedTransactions分布式
关系型数据库遵循ACID原则事务在英文中是transaction,和现实世界中的交易很类似,它有如下四个特性:1、A(Atomicity)原子性原子性很容易理解,也就是说事务里的所有操作要么全部做完,要么都不做,事务成功的条件是事务里的所有操作都成功,只要有一个操作失败,整个事务就失败,需要回滚。比如银行转账,从A账户转100元至B账户,分为两个步骤:1)从A账户取100元;2)存入100元至B账
- 【无标题】四色定理拓扑证明的数学强化与物理深化框架
2301_81062744
拓扑学
###**四色定理拓扑证明的数学强化与物理深化框架**---####**一、拓扑收缩的数学严谨性补全**#####**1.1零点插入的平面性保持证明**-**Kuratowski定理应用**:验证插入零点后的图\(G'\)不含\(K_5\)或\(K_{3,3}\)子图。-**引理**:每次插入零点仅增加2度顶点,不改变图的平面类。-**证明**:设原图\(G\)为平面图,插入零点\(p\)将边\(
- ——四色定理的解析与证明(完整版)
2301_81062744
拓扑学
——四色定理的解析与证明(完整版)###**引言**四色定理自1852年诞生以来,始终是图论与拓扑学领域的核心难题。其简洁的表述——“任何平面地图仅需四种颜色即可实现邻接区域异色”——与证明过程的复杂性形成鲜明对比。1976年,Appel与Haken通过计算机穷举约1500种不可约构形,首次给出确定性证明,却因依赖机器验证引发了数学哲学层面的长期争议。此后,数学家们不断寻求更直观、更具构造性的证明
- 机器学习—赵卫东阅读笔记(一)
走在考研路上
深度学习了解机器学习笔记人工智能
第一章:机器学习基础1.1.2机器学习主要流派1.符号主义2.贝叶斯分类——基础是贝叶斯定理3.联结主义——源于神经学,主要算法是神经网络。——BP算法:作为一种监督学习算法,训练神经网络时通过不断反馈当前网络计算结果与训练数据之间的误差来修正网络权重,使误差足够小。4.进化计算——通过迭代优化,找到最佳结果。——具有自组织、自适应、自学习的特性,能够有效处理传统优化算法难以解决的复杂问题(例如N
- 系统对接方案_浅谈RPA系统
weixin_39881760
系统对接方案
首先本文是有感而发,其次是我本身是大数据和人工智能领域产品多年从业者,并不局限于RPA领域,做过一些RPA项目也和客户沟通并且提供过顾问和咨询服务,所以有一定理解。从网上可见的大部分文章包括本问题下面的回答中,都可以看到,大部分是宏观回答,从狭义来说,RPA可以是一个软件工具、可以是一套系统也可以是一个平台;RPA可以让办公自动化、业务流程自动化。从广义来说,任何一个可被规则化且突发、未知情况少的
- 洛谷模板汇整
Alaso_shuang
算法分类算法
普及-P3378【模板】堆P3367【模板】并查集P1177【模板】快速排序P3383【模板】线性筛素数P3370【模板】字符串哈希P3366【模板】最小生成树P1226【模板】快速幂||取余运算普及/提高-P3385【模板】负环P3865【模板】ST表P8306【模板】字典树P5788【模板】单调栈P3811【模板】乘法逆元P4549【模板】裴蜀定理P3372【模板】线段树1P3382【模板】三
- 集合论导引:第一递归定义定理
AI大模型应用之禅
DeepSeekR1&AI大模型与大数据javapythonjavascriptkotlingolang架构人工智能
集合论,递归定义,第一递归定义定理,数学基础,计算机科学,数据结构,算法设计1.背景介绍在计算机科学的蓬勃发展中,集合论作为基础数学分支,扮演着至关重要的角色。它为数据结构、算法设计、程序语言等领域提供了坚实的理论基础。其中,递归定义是集合论中一个重要的概念,它能够简洁地描述复杂集合的结构和性质。本文将深入探讨第一递归定义定理,揭示其背后的数学原理和计算机科学中的应用。2.核心概念与联系2.1集合
- 图像算法工程师的技术图谱和学习路径
执于代码
开发者职业加速服务算法学习
01.图像算法图像算法工程师的技术图谱和学习路径涵盖了多个技术领域,从基础知识到高级算法,涉及计算机视觉、深度学习、图像处理、数学和编程等多个方面。以下是图像算法工程师的技术图谱和学习路径的详细总结。1.基础数学与编程数学基础:线性代数:矩阵运算、特征值、特征向量、奇异值分解(SVD)等概率论与统计:概率分布、贝叶斯定理、最大似然估计(MLE)、假设检验等微积分:导数、梯度、最优化方法(梯度下降、
- 【线代】《线性代数的几何意义》——摘录笔记(四)
jingyu404
线性代数读书及杂言
内容:大多是摘录原书,概括、理解是自己总结的。目的:供自己温习使用,有摘录不全或总结不精的部分。他人学习,仅供参考。目录U6线性方程组1.作用于向量的形式2.解的形式3.解的代数形式4.解的结构5.方程组、矩阵与向量的关系U7二次型1.定义2.表示(多项式与向量)3.用途4.几何意义5.二次型合同对角化6.惯性定理7.正定二次型笔记链接汇总U6线性方程组1.作用于向量的形式(1)看成矩阵对向量(x
- 线性代数(13)——向量空间、维度和四大子空间(下)
Jakob_Hu
线性代数
向量空间、维度和四大子空间零空间的基和秩-零化度定理零空间及零空间的基秩-零化度定理列空间与零空间对比零空间与矩阵的逆深入理解零空间左零空间回顾已有的三个子空间第四个子空间研究子空间的意义零空间的基和秩-零化度定理零空间及零空间的基一个齐次线性系统A⋅x=0A\cdotx=0A⋅x=0的解就是对应的系数矩阵的零空间。首先通过一个简单的齐次线性方程组进行演示,(−1231−4−13−354)⟹(10
- 什么是欧拉公式
玄湖白虎
数学建模正则表达式
欧拉公式在不同的学科中有着不同的含义。复变函数中,e^(ix)=(cosx+isinx)称为欧拉公式,e是自然对数的底,i是虚数单位。拓扑学中,在任何一个规则球面地图上,用R记区域个数,V记顶点个数,E记边界个数,则R+V-E=2,这就是欧拉定理,它于1640年由笛卡尔首先给出证明,后来欧拉于1752年又独立地给出证明,我们称其为欧拉定理,在国外也有人称其为笛卡尔定理。他被称为世界上最简洁的公式中
- java线程Thread和Runnable区别和联系
zx_code
javajvmthread多线程Runnable
我们都晓得java实现线程2种方式,一个是继承Thread,另一个是实现Runnable。
模拟窗口买票,第一例子继承thread,代码如下
package thread;
public class ThreadTest {
public static void main(String[] args) {
Thread1 t1 = new Thread1(
- 【转】JSON与XML的区别比较
丁_新
jsonxml
1.定义介绍
(1).XML定义
扩展标记语言 (Extensible Markup Language, XML) ,用于标记电子文件使其具有结构性的标记语言,可以用来标记数据、定义数据类型,是一种允许用户对自己的标记语言进行定义的源语言。 XML使用DTD(document type definition)文档类型定义来组织数据;格式统一,跨平台和语言,早已成为业界公认的标准。
XML是标
- c++ 实现五种基础的排序算法
CrazyMizzz
C++c算法
#include<iostream>
using namespace std;
//辅助函数,交换两数之值
template<class T>
void mySwap(T &x, T &y){
T temp = x;
x = y;
y = temp;
}
const int size = 10;
//一、用直接插入排
- 我的软件
麦田的设计者
我的软件音乐类娱乐放松
这是我写的一款app软件,耗时三个月,是一个根据央视节目开门大吉改变的,提供音调,猜歌曲名。1、手机拥有者在android手机市场下载本APP,同意权限,安装到手机上。2、游客初次进入时会有引导页面提醒用户注册。(同时软件自动播放背景音乐)。3、用户登录到主页后,会有五个模块。a、点击不胫而走,用户得到开门大吉首页部分新闻,点击进入有新闻详情。b、
- linux awk命令详解
被触发
linux awk
awk是行处理器: 相比较屏幕处理的优点,在处理庞大文件时不会出现内存溢出或是处理缓慢的问题,通常用来格式化文本信息
awk处理过程: 依次对每一行进行处理,然后输出
awk命令形式:
awk [-F|-f|-v] ‘BEGIN{} //{command1; command2} END{}’ file
[-F|-f|-v]大参数,-F指定分隔符,-f调用脚本,-v定义变量 var=val
- 各种语言比较
_wy_
编程语言
Java Ruby PHP 擅长领域
- oracle 中数据类型为clob的编辑
知了ing
oracle clob
public void updateKpiStatus(String kpiStatus,String taskId){
Connection dbc=null;
Statement stmt=null;
PreparedStatement ps=null;
try {
dbc = new DBConn().getNewConnection();
//stmt = db
- 分布式服务框架 Zookeeper -- 管理分布式环境中的数据
矮蛋蛋
zookeeper
原文地址:
http://www.ibm.com/developerworks/cn/opensource/os-cn-zookeeper/
安装和配置详解
本文介绍的 Zookeeper 是以 3.2.2 这个稳定版本为基础,最新的版本可以通过官网 http://hadoop.apache.org/zookeeper/来获取,Zookeeper 的安装非常简单,下面将从单机模式和集群模式两
- tomcat数据源
alafqq
tomcat
数据库
JNDI(Java Naming and Directory Interface,Java命名和目录接口)是一组在Java应用中访问命名和目录服务的API。
没有使用JNDI时我用要这样连接数据库:
03. Class.forName("com.mysql.jdbc.Driver");
04. conn
- 遍历的方法
百合不是茶
遍历
遍历
在java的泛
- linux查看硬件信息的命令
bijian1013
linux
linux查看硬件信息的命令
一.查看CPU:
cat /proc/cpuinfo
二.查看内存:
free
三.查看硬盘:
df
linux下查看硬件信息
1、lspci 列出所有PCI 设备;
lspci - list all PCI devices:列出机器中的PCI设备(声卡、显卡、Modem、网卡、USB、主板集成设备也能
- java常见的ClassNotFoundException
bijian1013
java
1.java.lang.ClassNotFoundException: org.apache.commons.logging.LogFactory 添加包common-logging.jar2.java.lang.ClassNotFoundException: javax.transaction.Synchronization
- 【Gson五】日期对象的序列化和反序列化
bit1129
反序列化
对日期类型的数据进行序列化和反序列化时,需要考虑如下问题:
1. 序列化时,Date对象序列化的字符串日期格式如何
2. 反序列化时,把日期字符串序列化为Date对象,也需要考虑日期格式问题
3. Date A -> str -> Date B,A和B对象是否equals
默认序列化和反序列化
import com
- 【Spark八十六】Spark Streaming之DStream vs. InputDStream
bit1129
Stream
1. DStream的类说明文档:
/**
* A Discretized Stream (DStream), the basic abstraction in Spark Streaming, is a continuous
* sequence of RDDs (of the same type) representing a continuous st
- 通过nginx获取header信息
ronin47
nginx header
1. 提取整个的Cookies内容到一个变量,然后可以在需要时引用,比如记录到日志里面,
if ( $http_cookie ~* "(.*)$") {
set $all_cookie $1;
}
变量$all_cookie就获得了cookie的值,可以用于运算了
- java-65.输入数字n,按顺序输出从1最大的n位10进制数。比如输入3,则输出1、2、3一直到最大的3位数即999
bylijinnan
java
参考了网上的http://blog.csdn.net/peasking_dd/article/details/6342984
写了个java版的:
public class Print_1_To_NDigit {
/**
* Q65.输入数字n,按顺序输出从1最大的n位10进制数。比如输入3,则输出1、2、3一直到最大的3位数即999
* 1.使用字符串
- Netty源码学习-ReplayingDecoder
bylijinnan
javanetty
ReplayingDecoder是FrameDecoder的子类,不熟悉FrameDecoder的,可以先看看
http://bylijinnan.iteye.com/blog/1982618
API说,ReplayingDecoder简化了操作,比如:
FrameDecoder在decode时,需要判断数据是否接收完全:
public class IntegerH
- js特殊字符过滤
cngolon
js特殊字符js特殊字符过滤
1.js中用正则表达式 过滤特殊字符, 校验所有输入域是否含有特殊符号function stripscript(s) { var pattern = new RegExp("[`~!@#$^&*()=|{}':;',\\[\\].<>/?~!@#¥……&*()——|{}【】‘;:”“'。,、?]"
- hibernate使用sql查询
ctrain
Hibernate
import java.util.Iterator;
import java.util.List;
import java.util.Map;
import org.hibernate.Hibernate;
import org.hibernate.SQLQuery;
import org.hibernate.Session;
import org.hibernate.Transa
- linux shell脚本中切换用户执行命令方法
daizj
linuxshell命令切换用户
经常在写shell脚本时,会碰到要以另外一个用户来执行相关命令,其方法简单记下:
1、执行单个命令:su - user -c "command"
如:下面命令是以test用户在/data目录下创建test123目录
[root@slave19 /data]# su - test -c "mkdir /data/test123"
- 好的代码里只要一个 return 语句
dcj3sjt126com
return
别再这样写了:public boolean foo() { if (true) { return true; } else { return false;
- Android动画效果学习
dcj3sjt126com
android
1、透明动画效果
方法一:代码实现
public View onCreateView(LayoutInflater inflater, ViewGroup container, Bundle savedInstanceState)
{
View rootView = inflater.inflate(R.layout.fragment_main, container, fals
- linux复习笔记之bash shell (4)管道命令
eksliang
linux管道命令汇总linux管道命令linux常用管道命令
转载请出自出处:
http://eksliang.iteye.com/blog/2105461
bash命令执行的完毕以后,通常这个命令都会有返回结果,怎么对这个返回的结果做一些操作呢?那就得用管道命令‘|’。
上面那段话,简单说了下管道命令的作用,那什么事管道命令呢?
答:非常的经典的一句话,记住了,何为管
- Android系统中自定义按键的短按、双击、长按事件
gqdy365
android
在项目中碰到这样的问题:
由于系统中的按键在底层做了重新定义或者新增了按键,此时需要在APP层对按键事件(keyevent)做分解处理,模拟Android系统做法,把keyevent分解成:
1、单击事件:就是普通key的单击;
2、双击事件:500ms内同一按键单击两次;
3、长按事件:同一按键长按超过1000ms(系统中长按事件为500ms);
4、组合按键:两个以上按键同时按住;
- asp.net获取站点根目录下子目录的名称
hvt
.netC#asp.nethovertreeWeb Forms
使用Visual Studio建立一个.aspx文件(Web Forms),例如hovertree.aspx,在页面上加入一个ListBox代码如下:
<asp:ListBox runat="server" ID="lbKeleyiFolder" />
那么在页面上显示根目录子文件夹的代码如下:
string[] m_sub
- Eclipse程序员要掌握的常用快捷键
justjavac
javaeclipse快捷键ide
判断一个人的编程水平,就看他用键盘多,还是鼠标多。用键盘一是为了输入代码(当然了,也包括注释),再有就是熟练使用快捷键。 曾有人在豆瓣评
《卓有成效的程序员》:“人有多大懒,才有多大闲”。之前我整理了一个
程序员图书列表,目的也就是通过读书,让程序员变懒。 写道 程序员作为特殊的群体,有的人可以这么懒,懒到事情都交给机器去做,而有的人又可
- c++编程随记
lx.asymmetric
C++笔记
为了字体更好看,改变了格式……
&&运算符:
#include<iostream>
using namespace std;
int main(){
int a=-1,b=4,k;
k=(++a<0)&&!(b--
- linux标准IO缓冲机制研究
音频数据
linux
一、什么是缓存I/O(Buffered I/O)缓存I/O又被称作标准I/O,大多数文件系统默认I/O操作都是缓存I/O。在Linux的缓存I/O机制中,操作系统会将I/O的数据缓存在文件系统的页缓存(page cache)中,也就是说,数据会先被拷贝到操作系统内核的缓冲区中,然后才会从操作系统内核的缓冲区拷贝到应用程序的地址空间。1.缓存I/O有以下优点:A.缓存I/O使用了操作系统内核缓冲区,
- 随想 生活
暗黑小菠萝
生活
其实账户之前就申请了,但是决定要自己更新一些东西看也是最近。从毕业到现在已经一年了。没有进步是假的,但是有多大的进步可能只有我自己知道。
毕业的时候班里12个女生,真正最后做到软件开发的只要两个包括我,PS:我不是说测试不好。当时因为考研完全放弃找工作,考研失败,我想这只是我的借口。那个时候才想到为什么大学的时候不能好好的学习技术,增强自己的实战能力,以至于后来找工作比较费劲。我
- 我认为POJO是一个错误的概念
windshome
javaPOJO编程J2EE设计
这篇内容其实没有经过太多的深思熟虑,只是个人一时的感觉。从个人风格上来讲,我倾向简单质朴的设计开发理念;从方法论上,我更加倾向自顶向下的设计;从做事情的目标上来看,我追求质量优先,更愿意使用较为保守和稳妥的理念和方法。
&