Codeforces Round #263 (Div. 2)D(树形DP)

D. Appleman and Tree
time limit per test
2 seconds
memory limit per test
256 megabytes
input
standard input
output
standard output

Appleman has a tree with n vertices. Some of the vertices (at least one) are colored black and other vertices are colored white.

Consider a set consisting of k (0 ≤ k < n) edges of Appleman's tree. If Appleman deletes these edges from the tree, then it will split into(k + 1) parts. Note, that each part will be a tree with colored vertices.

Now Appleman wonders, what is the number of sets splitting the tree in such a way that each resulting part will have exactly one black vertex? Find this number modulo 1000000007 (109 + 7).

Input

The first line contains an integer n (2  ≤ n ≤ 105) — the number of tree vertices.

The second line contains the description of the tree: n - 1 integers p0, p1, ..., pn - 2 (0 ≤ pi ≤ i). Where pi means that there is an edge connecting vertex (i + 1) of the tree and vertex pi. Consider tree vertices are numbered from 0 to n - 1.

The third line contains the description of the colors of the vertices: n integers x0, x1, ..., xn - 1 (xi is either 0 or 1). If xi is equal to 1, vertex i is colored black. Otherwise, vertex i is colored white.

Output

Output a single integer — the number of ways to split the tree modulo 1000000007 (109 + 7).

Sample test(s)
input
3
0 0
0 1 1
output
2
input
6
0 1 1 0 4
1 1 0 0 1 0
output
1
input
10
0 1 2 1 4 4 4 0 8
0 0 0 1 0 1 1 0 0 1
output
27

题意:给了一棵树以及每个节点的颜色,1代表黑,0代表白,要求的是,如果将这棵树拆成k棵树,使得每棵树恰好有一个黑色节点

思路:树形dp

          dp[u][0]表示以u为根的子树对父亲的贡献为0

          dp[u][1]表示以u为根的子树对父亲的贡献为1

          我现在假设u为白色,它的子树有x,y,z,那么有

          dp[u][1]+=dp[x][1]*dp[y][0]*dp[z][0]+dp[x][0]*dp[y][1]*dp[z][0]+dp[x][0]*dp[y][0]*dp[z][1]

          dp[u][0]+=dp[x][0]*dp[y][0]*dp[z][0]

          然后判断u的颜色,假设u的父亲为p

         1.为黑色,不切断边(u,p),那么dp[u][1]=dp[u][0],切断(u,p),那么dp[u][0]不变

         2.为白色,如果切断(u,p),dp[u][0]还要加上dp[u][1]

你可能感兴趣的:(ACM,codeforces)