小凸和小方是好朋友,小方给小凸一个N*M(N<=M)的矩阵A,要求小秃从其中选出N个数,其中任意两个数字不能在同一行或同一列,现小凸想知道选出来的N个数中第K大的数字的最小值是多少。
题意:中文题
思路:二分答案,然后比较显然的网络流建图之后看看最大流是否大于n-k+1就可以了
#include<bits/stdc++.h> using namespace std; #define INF 1e9+100 const int maxn = 250*250+100; struct Edge { int from,to,cap,flow; Edge(int u,int v,int c,int f):from(u),to(v),cap(c),flow(f){} }; struct Dinic { int n,m,s,t; vector<Edge>edges; vector<int> G[maxn]; bool vis[maxn]; int d[maxn]; int cur[maxn]; void AddEdge(int from,int to,int cap) { edges.push_back(Edge(from,to,cap,0)); edges.push_back(Edge(to,from,0,0)); m = edges.size(); G[from].push_back(m-2); G[to].push_back(m-1); } void init(int n) { for (int i = 0;i<=n;i++) G[i].clear(); edges.clear(); } bool BFS() { memset(vis,0,sizeof(vis)); queue<int>q; q.push(s); d[s]=0; vis[s]=1; while (!q.empty()) { int x = q.front(); q.pop(); for (int i = 0;i<G[x].size();i++){ Edge &e = edges[G[x][i]]; if (!vis[e.to] && e.cap>e.flow){ vis[e.to]=1; d[e.to]=d[x]+1; q.push(e.to); } } } return vis[t]; } int DFS(int x,int a){ if (x==t || a==0) return a; int flow = 0,f; for (int &i=cur[x];i<G[x].size();i++){ Edge&e = edges[G[x][i]]; if (d[x]+1==d[e.to] && (f=DFS(e.to,min(a,e.cap-e.flow)))>0){ e.flow+=f; edges[G[x][i]^1].flow-=f; flow+=f; a-=f; if (a==0) break; } } return flow; } int Maxflow(int s,int t) { this->s=s; this->t=t; int flow = 0; while (BFS()) { memset(cur,0,sizeof(cur)); flow+=DFS(s,INF); } return flow; } }di; int mp[252][252]; int n,m,k; bool check(int x) { di.init(n+m+10); int s= 0; int t = n+m+1; for (int i = 1;i<=n;i++) { di.AddEdge(s,i,1); for (int j= 1;j<=m;j++) if (mp[i][j] <= x) di.AddEdge(i,n+j,1); } for (int j = 1;j<=m;j++) di.AddEdge(n+j,t,1); if (di.Maxflow(s,t)>=n-k+1) return 1; return 0; } int main() { while (scanf("%d%d%d",&n,&m,&k)!=EOF) { for (int i = 1;i<=n;i++) for (int j= 1;j<=m;j++) scanf("%d",&mp[i][j]); int l = 0,r=INF,ans=-1; while (l<=r) { int m = (l+r)>>1; if (check(m)) r=m-1,ans=m; else l=m+1; } printf("%d\n",ans); } }
Description
Input
Output
Sample Input
3 4 2 1 5 6 6 8 3 4 3 6 8 6 3
Sample Output
3
Hint
1<=K<=N<=M<=250,1<=矩阵元素<=10^9