pr.h
#ifndef MY_PR_H #define MY_PR_H #ifdef ENABLE_PR #ifndef TOSSIM #include "printf.h" #define pr(fmt, args...) do { printf(fmt, ##args); printfflush(); } while (0) #else #define pr(fmt, args...) dbg("Sim", fmt, ##args) #endif // TOSSIM #else #define pr(fmt, args...) #endif // ENABLE_PR #endif /* PR_H */
#ifndef BLINKTORADIO_H #define BLINKTORADIO_H enum { AM_BLINKTORADIO = 6, TIMER_PERIOD_MILLI = 250 }; typedef nx_struct BlinkToRadioMsg { nx_uint16_t nodeid; nx_uint16_t counter; } BlinkToRadioMsg; #endifBlinkToRadioC.nc
/** * Implementation of the BlinkToRadio application. A counter is * incremented and a radio message is sent whenever a timer fires. * Whenever a radio message is received, the three least significant * bits of the counter in the message payload are displayed on the * LEDs. Program two motes with this application. As long as they * are both within range of each other, the LEDs on both will keep * changing. If the LEDs on one (or both) of the nodes stops changing * and hold steady, then that node is no longer receiving any messages * from the other node. */ #include <Timer.h> #include "BlinkToRadio.h" #include "pr.h" module BlinkToRadioC { uses interface Boot; uses interface Leds; uses interface Timer<TMilli> as Timer0; uses interface Packet; uses interface AMSend; uses interface Receive; uses interface SplitControl as AMControl; } implementation { uint16_t counter; message_t pkt; bool busy = FALSE; void setLeds(uint16_t val) { if (val & 0x01) call Leds.led0On(); else call Leds.led0Off(); if (val & 0x02) call Leds.led1On(); else call Leds.led1Off(); if (val & 0x04) call Leds.led2On(); else call Leds.led2Off(); } event void Boot.booted() { call AMControl.start(); } event void AMControl.startDone(error_t err) { if (err == SUCCESS) { call Timer0.startPeriodic(TIMER_PERIOD_MILLI); pr("start done\n"); } else { call AMControl.start(); } } event void AMControl.stopDone(error_t err) { pr("stop done\n"); } event void Timer0.fired() { counter++; if (!busy) { BlinkToRadioMsg * btrpkt = (BlinkToRadioMsg *)(call Packet.getPayload(&pkt, sizeof (BlinkToRadioMsg))); if (btrpkt == NULL) { pr("can not creatbtr\n"); return; } btrpkt->nodeid = TOS_NODE_ID; btrpkt->counter = counter; if (call AMSend.send(3, &pkt, sizeof (BlinkToRadioMsg)) == SUCCESS) { pr("call send\n"); busy = TRUE; } } } event void AMSend.sendDone(message_t * msg, error_t err) { if (&pkt == msg) { busy = FALSE; } } event message_t * Receive.receive(message_t * msg, void * payload, uint8_t len) { pr("in receive\n"); if (len == sizeof (BlinkToRadioMsg)) { BlinkToRadioMsg * btrpkt = (BlinkToRadioMsg *)payload; setLeds(btrpkt->counter); pr("receive from nodeid:%d,%d\n", btrpkt->nodeid, btrpkt->counter); } return msg; } }BlinkToRadioAppC.nc
/** * Application file for the BlinkToRadio application. A counter is * incremented and a radio message is sent whenever a timer fires. * Whenever a radio message is received, the three least significant * bits of the counter in the message payload are displayed on the * LEDs. Program two motes with this application. As long as they * are both within range of each other, the LEDs on both will keep * changing. If the LEDs on one (or both) of the nodes stops changing * and hold steady, then that node is no longer receiving any messages * from the other node. */ #include <Timer.h> #include "BlinkToRadio.h" configuration BlinkToRadioAppC { } implementation { components MainC; components LedsC; components BlinkToRadioC as App; components new TimerMilliC() as Timer0; components ActiveMessageC; components new AMSenderC(AM_BLINKTORADIO); components new AMReceiverC(AM_BLINKTORADIO); App.Boot -> MainC; App.Leds -> LedsC; App.Timer0 -> Timer0; App.Packet -> AMSenderC; App.AMControl -> ActiveMessageC; App.AMSend -> AMSenderC; App.Receive -> AMReceiverC; }Makefile
COMPONENT=BlinkToRadioAppC CFLAGS += -DCC2420_DEF_CHANNEL=13 CFLAGS += -DCC2420_DEF_RFPOWER=5 CFLAGS += -DENABLE_PR CFLAGS += -I$(TOSDIR)/lib/printf CFLAGS += -DTOSH_DATA_LENGTH=128 include $(MAKERULES)