- LLM 为什么需要 tokenizer?
SmallerFL
NLP&机器学习语言模型gptnlppython词嵌入深度学习transformer
文章目录1.LLM预训练目的1.1什么是语言模型2.Tokenizer一般处理流程(了解)3.进行Tokenizer的原因3.1one-hot的问题3.2词嵌入4.结语1.LLM预训练目的我们必须知道一个预训练目的:LLM的预训练是为了建立语言模型。1.1什么是语言模型预训练的语言模型通常是建立预测模型的,即预测下一个词的概率。通常采用了基于自监督学习的方式进行预训练,其中最常见的方法之一是使用自
- 基于python的手写数字识别knn_用sklearn中的KNN实现Kaggle手写数字识别
普和司
importcsvfromsklearnimportneighbors#导入训练数据和测试数据defloadData(filename1,filename2,trainDataSet,trainTargetSet,testDataSet):withopen(filename1,'r')ascsvfile1:lines1=csv.reader(csvfile1)dataSet=list(lines1
- OSError: We couldn‘t connect to ‘https://huggingface.co‘ to load this file,
小李飞刀李寻欢
Notebookhuggingfacebert分类大模型
场景:训练bert-base-chinese下游任务:分类。在一个服务器可以用,但GPU只有一个卡,只能换一个服务器,换个服务器又要重装环境,但后者下载模型有问题,手动用git-lfs下载后指定位置报错:Traceback(mostrecentcalllast):/examples/pytorch/text-classification/run_glue.py",line622,inmain()/
- DeepSeek、Grok、ChatGPT4.5和Gemini四大AI模型深度解析:谁才是你的最佳助手
lifire_H
人工智能chatgptDeepSeekGrok
在AI技术爆发的今天,DeepSeek、Grok、ChatGPT4.5和Gemini这四大主流模型各显神通。本文大白话帮你理清它们的优缺点,看完就知道该选谁干活了!一、四大金刚的看家本领1.DeepSeek:省钱小能手这个国产AI最擅长精打细算,训练成本只要557万美元(其他家动不动上亿),就像用奥拓的钱造出了奥迪。它在金融、医疗等专业领域特别灵光,处理中文合同比老外AI强得多。不过看图能力还停留
- QwQ-32B企业级本地部署:结合XInference与Open-WebUI使用
大势下的牛马
搭建本地gptRAG知识库人工智能QwQ-32B
QwQ-32B是阿里巴巴Qwen团队推出的一款推理模型,拥有320亿参数,基于Transformer架构,采用大规模强化学习方法训练而成。它在数学推理、编程等复杂问题解决任务上表现出色,性能可媲美拥有6710亿参数的DeepSeek-R1。QwQ-32B在多个基准测试中表现出色,例如在AIME24基准上,其数学问题解决能力得分达到79.5,超过OpenAI的o1-mini。它在LiveBench、
- Deep Lake:人工智能时代的数据湖
开源项目精选
人工智能
DeepLake是一款由Activeloop开发的开源深度学习数据湖,旨在解决深度学习数据管理的挑战。它提供高效的多模态数据管理、类似Git的版本控制、强大的查询和可视化功能,并与MLOps生态系统无缝集成,助你轻松驾驭海量数据,加速模型训练!Stars数8,458Forks数652主要特点多模态数据支持:支持图像、视频、音频、文本、点云等各种数据类型。张量存储:以深度学习框架友好的张量格式存储数
- PyTorch深度学习框架60天进阶学习计划 - 第18天:模型压缩技术
凡人的AI工具箱
深度学习pytorch学习python人工智能
PyTorch深度学习框架60天进阶学习计划-第18天:模型压缩技术目录模型压缩技术概述知识蒸馏详解软标签生成策略KL散度损失推导温度参数调节结构化剪枝技术通道剪枝评估准则L1-norm剪枝算法APoZ剪枝算法量化训练基础量化类型与精度PyTorch量化API剪枝与量化协同优化Torch.fx动态计算图修改自动化模型压缩流程实现实战案例:ResNet模型压缩性能评估与分析进阶挑战与思考1.模型压缩
- 代码随想录算法训练营day2| 209.长度最小的子数组|59.螺旋矩阵II|区间和|开发商购买土地
70ng
算法矩阵线性代数leetcodejava
209.长度最小的子数组找出该数组中满足其总和大于等于target的长度最小的子数组[numsl,numsl+1,...,numsr-1,numsr],并返回其长度**。**如果不存在符合条件的子数组,返回0。classSolution{publicintminSubArrayLen(inttarget,int[]nums){intfast=0;//快指针intslow=0;//慢指针intsum
- Labelme转Voc、Coco
小慧1024
python
Q:在github找的cv代码基本都是根据现有且流行的公共数据集格式组织的训练数据集,这导致我使用labelme标注好之后需要我们重新组织数据集labelme2coco#!/usr/bin/envpythonimportargparseimportcollectionsimportdatetimeimportglobimportjsonimportosimportos.pathasospimpor
- 《探秘人工智能与鸿蒙系统集成开发的硬件基石》
人工智能深度学习
在科技飞速发展的当下,人工智能与鸿蒙系统的集成开发开辟了创新的前沿领域。这一融合不仅代表着技术的演进,更预示着智能设备生态的全新变革。而在这场技术盛宴的背后,坚实的硬件配置是确保开发顺利进行的关键,它就像一座大厦的基石,决定了上层建筑的高度和稳定性。处理器:运算核心的澎湃动力处理器作为硬件系统的核心,在人工智能与鸿蒙系统集成开发中扮演着至关重要的角色。对于模型训练任务,尤其是深度学习模型,其复杂的
- 第81期 | GPTSecurity周报
aigc网络安全
GPTSecurity是一个涵盖了前沿学术研究和实践经验分享的社区,集成了生成预训练Transformer(GPT)、人工智能生成内容(AIGC)以及大语言模型(LLM)等安全领域应用的知识。在这里,您可以找到关于GPT/AIGC/LLM最新的研究论文、博客文章、实用的工具和预设指令(Prompts)。现为了更好地知悉近一周的贡献内容,现总结如下。SecurityPapers1.大语言模型与代码安
- 【智能客服】意图识别训练协作优化机制
姚瑞南
智能客服意图识别训练流程及规范人工智能AIGC自然语言处理正则表达式
本文原创作者:姚瑞南AI-Agent大模型运营专家,先后任职于美团、猎聘等中大厂AI训练专家和智能运营专家岗;多年人工智能行业智能产品运营及大模型落地经验,拥有AI外呼方向国家专利与PMP项目管理证书。(转载需经授权)目录一、背景二、识别训练协作模式三、识别归类规则及定义1.间接识别归类2.未识别归类四、标准问与扩展问新增原则1.扩展问编写原则2.标准问编写原则五、识别优化流程1.获取数据来源2.
- 【AI】从头到脚详解如何创建部署Azure Web App的OpenAI项目
小涵
Azure云企业实战指南本地离线DeepSeekAI方案部署实战教程【完全版】人工智能azurewebappAIdockerpython
【AI】从头到脚详解如何创建部署AzureWebApp的OpenAI项目在AzureWeb应用上,您可以使用Python的OpenAI包方便快捷地调用官方API,上传您的训练数据,并利用他们的算法进行处理。本教程提供了一个逐步指南,帮助您在AzureWeb应用上部署您的OpenAI项目,涵盖了从资源设置到解决常见问题的所有内容。推荐超级课程:本地离线DeepSeekAI方案部署实战教程【完全版】D
- 【LLM大模型】大模型涌现能力及 Prompt Engineering提示词
Langchain
prompt人工智能llamalangchainai大模型LLM
涌现能力GPT3是第一批拥有“涌现能力”的大语言模型,即模型未经特定任务的训练,但在适当的提示下,仍然能够解决某些特定领域的问题。例如大语言模型可以解答数学问题、辅助进行编程、甚至是进行问答等,其实都属于模型的涌现能力。作为概率模型,大语言模型甚至不知道数字代表的真实含义,模型只是在学习了无数的语料之后,发现了一些数学结论之间的潜在概率关系,才最终涌现出了数学运算或者复杂推理的能力。但是“涌现能力
- Prompt优化 COT/COD
陌陌623
prompt人工智能
文章目录基本的方法论框架COT/CODCOT/COD对比其他优化点1.示例引导与少样本学习2.角色设定与背景引导3.任务分解与步骤引导基本的方法论框架基础要素:指令、背景信息、补充数据(要求)、输出格式、(其他限制条件)有时背景信息较长,限制信息可能会失效,可以最后再写一个限制信息。例如:大模型用来画思维导图指令:帮我写一个模型训练的思维导图。背景信息:千帆ModelBuilder训练流程为框架。
- 0312-PromptMRG:诊断驱动的医疗报告生成提示
m0_65156252
学习笔记
1,摘要:提出了诊断驱动的医疗报告生成提示(PromptMRG),这是一个新的框架,旨在通过诊断感知提示的指导提高MRG的诊断准确性。具体来说,PromptMRG是基于编码器-解码器架构,并带有一个额外的疾病分类分支。在生成报告时,来自分类分支的诊断结果将被转换为令牌提示,以显式地指导生成过程。为了进一步提高诊断准确性,我们设计了跨模态特征增强,通过利用预训练CLIP的知识,从数据库中检索相似的报
- 代码随想录训练营算法第三十四天|动态规划|62.不同路径、63. 不同路径 II、343. 整数拆分、96.不同的二叉搜索树。
weixin_64181248
算法
62.不同路径62.不同路径-力扣(LeetCode)代码随想录还是不太熟悉怎么递推,用dp[i][j]代表走到第i行j列有多少路线,而i行j列可以通过[i-1][j]和[i][j-1]分别走一步得到。classSolution{public:intuniquePaths(intm,intn){vector>dp(m+1,vector(n+1,0));for(inti=1;i>&obstacleG
- 适合机器学习的Linux系统推荐及基本配置指南
金外飞176
信息分享机器学习linux人工智能
适合机器学习的Linux系统推荐及基本配置指南在机器学习领域,选择一个合适的Linux发行版至关重要。它不仅影响开发效率,还可能影响模型训练的性能。经过广泛调研和用户反馈,Ubuntu脱颖而出,成为众多机器学习爱好者的首选。下面将详细介绍为何推荐Ubuntu以及其基本配置需求。一、推荐Ubuntu的理由1.用户友好的界面和强大的社区支持Ubuntu提供了直观的图形用户界面,对于初次接触Linux的
- 代码随想录算法训练营第一天| 704. 二分查找、27. 移除元素
Anjoubecoding
c++算法数据结构leetcode
一、Leetcode704二分查找题目链接:Leetcode704这个题目在之前秋招准备的时候就刷了,好几个月没刷又忘了这个题目的思想,二分法的使用前提是有序数组,这里主要是看查找区间是左闭右闭还是左闭右开,这两种方法都可以,不同方法对应着不同的while循环条件(是left&nums,inttarget){intleft=0,right=nums.size()-1,middle=(left+ri
- 【蓝桥杯备赛】Day07:循环结构程序设计(上)
凯强同学
蓝桥杯蓝桥杯python
题目1:题目1151:C语言训练-计算一个整数N的阶乘计算一个整数N的阶乘输入格式一个整数N,(00.05:print('better')elifj-list1[i]>0.05:print('worse')else:print('same')知识点1.list.append():列表末尾补充元素
- 全面解析RRU软件可测性设计引入AI算法的实践
youngerwang
测试验证之禅道射频移动pythonpytorch信息与通信集成测试测试覆盖率开源
文章目录全面解析RRU软件可测性设计引入AI算法的实践本文概要整体架构流程一、引言二、具体思想点2.1智能测试用例生成2.2异常检测与定位三、落地要求3.1数据基础3.2算法与模型3.3系统集成四、检查评估项4.1测试用例生成评估4.2异常检测与定位评估5AI算法设计和框架应用5.1.算法设计思路5.2.模型设计5.3.用例设计训练数据准备模型训练全面解析RRU软件可测性设计引入AI算法的实践本文
- 【图像去噪】论文复现:TPAMI 2025!全面提升单图像去噪泛化性!像素级零样本去噪方法Pixel2Pixel的Pytorch源码复现,跑通源码,修改各种报错,框架详解,注释详细!
十小大
pytorch人工智能python深度学习计算机视觉图像处理图像去噪
请先看【专栏介绍文章】:【图像去噪(ImageDenoising)】关于【图像去噪】专栏的相关说明,包含适配人群、专栏简介、专栏亮点、阅读方法、定价理由、品质承诺、关于更新、去噪概述、文章目录、资料汇总、问题汇总(更新中)完整代码和训练好的模型权重文件下载链接见本文底部,订阅专栏免费获取!本文亮点:跑通Pixel2Pixel全部源码,包含数据集准备、制作像素库(PixelBank)、训练和推理等,
- 分布式训练中的参数local_rank
挨打且不服66
python分布式python
local_rank是一个常用于分布式训练中的参数,用于指示当前进程的本地编号。它帮助在分布式环境中区分不同的进程。通常情况下,local_rank的值为-1表示不进行分布式训练,值为0表示第一个(主)进程,其它正数表示其它辅助进程。在分布式训练中,我们常常需要确保某些操作(例如下载模型和词汇表)只由一个进程完成,以避免重复工作和资源浪费。以下是local_rank在不同情况下的用法解释:loca
- Epoch 和 Batch Size的设计 + 模型的早停策略(基于上篇)
一只小铁柱
batch开发语言
一.epoch和batchsize的设计epoch和batchsize是训练神经网络时的两个关键超参数,它们的设计会直接影响模型的训练速度、收敛性和最终性能。1.Epoch的设计epoch表示整个数据集被模型完整遍历一次。设计epoch时需要考虑以下因素:1.1数据集大小小数据集(例如几MB的文本数据):模型容易过拟合,因此epoch不宜过大(例如10-30)。可以使用早停(earlystoppi
- (4-8)基于DeepSeekMoE架构的DeepSeek-V3:测试模型
码农三叔
训练RAG多模态)架构transformerdeekseek人工智能大模型
4.8测试模型DeepSeek-V3是一款基于PyTorch的深度学习模型,主要用于文本生成任务。在加载模型时,首先需要从指定路径加载模型的配置文件和预训练权重。加载完成后,模型被设置为评估模式,并移动到GPU上以加速推理过程。在生成文本时,用户可以输入提示文本,模型会根据这些提示生成相应的文本输出。生成过程支持交互式输入和批量处理两种模式,用户可以根据需要选择适合的方式进行文本生成。此外,模型的
- 图像识别技术与应用
超帅的好吧
笔记
第一节课这节课了解了这门专业的就业职位:工资是怎么样的岗位职责和任职要求看到了人类工业文明的演变了解了人工智能的研究、开发、模拟、延伸、理论、方法和技术看到了生活方式的转变比如智能语音闹钟控制系统、自动驾驶和人脸识别考勤智能购物、医疗日常生活的智能比如指纹、淘宝、抖音还能用软件看到天气的好坏了解了典型训练和机器学习中的关键组件机器学习中的关键组件包含:数据模型目标函数优化算法这节课学习了第一节剩下
- 一个基于LSTM的字符级文本生成模型的训练+使用(pytorch)
一只小铁柱
lstmpytorch人工智能
一、代码实现1.配置文件config.pyimporttorch#设备配置DEVICE=torch.device('cuda'iftorch.cuda.is_available()else'cpu')#超参数和配置SEQ_LENGTH=100#输入序列长度BATCH_SIZE=64#批大小EMBEDDING_DIM=256#嵌入层维度HIDDEN_SIZE=512#LSTM隐藏层大小NUM_LAY
- 模型训练和推理
一杯水果茶!
视觉与网络python梯度反向传播训练推理
训练时需要梯度,推理时不需要怎么理解“梯度”?计算图以及前向后向传播训练时需要梯度,推理时不需要阶段是否计算梯度是否反向传播是否更新参数用例写法训练✅✅✅loss训练默认即可,requires_grad=True推理❌❌❌采样、预测、部署用@torch.inference_mode()或withtorch.no_grad()训练阶段必须开启梯度计算:要计算loss(损失函数)然后通过loss.ba
- 【Agent实战】RAG方式+结构化prompt(CoT)+API工具结合ChatGPT4o能力Agent项目实践(货物上架位置推荐助手)
姚瑞南
RAG技术应用探索大模型落地探索及agent搭建promptchatgpt自然语言处理人工智能AIGC
本文原创作者:姚瑞南AI-agent大模型运营专家,先后任职于美团、猎聘等中大厂AI训练专家和智能运营专家岗;多年人工智能行业智能产品运营及大模型落地经验,拥有AI外呼方向国家专利与PMP项目管理证书。(转载需经授权)目录结论效果图示1.prompt2.API工具封装3.知识库搭建4.测试用例结论成功利用ChatGPT4o版本结合RAG知识库方式,通过结构化prompt(CoT)调用API工具为用
- YOLO系列模型从v1到v10的演进
剑走偏锋o.O
YOLO目标跟踪人工智能
文章目录引言YOLOv1:开创单阶段目标检测先河发布时间与背景核心创新模型架构训练策略与优化YOLOv2:提升精度与速度的平衡发布时间与背景核心创新模型架构训练策略与优化YOLOv3:多尺度检测与残差连接发布时间与背景核心创新模型架构训练策略与优化YOLOv4:引入注意力机制与优化模块发布时间与背景核心创新模型架构训练策略与优化YOLOv5:工程优化与实际应用的结合发布时间与背景核心创新模型架构训
- 基本数据类型和引用类型的初始值
3213213333332132
java基础
package com.array;
/**
* @Description 测试初始值
* @author FuJianyong
* 2015-1-22上午10:31:53
*/
public class ArrayTest {
ArrayTest at;
String str;
byte bt;
short s;
int i;
long
- 摘抄笔记--《编写高质量代码:改善Java程序的151个建议》
白糖_
高质量代码
记得3年前刚到公司,同桌同事见我无事可做就借我看《编写高质量代码:改善Java程序的151个建议》这本书,当时看了几页没上心就没研究了。到上个月在公司偶然看到,于是乎又找来看看,我的天,真是非常多的干货,对于我这种静不下心的人真是帮助莫大呀。
看完整本书,也记了不少笔记
- 【备忘】Django 常用命令及最佳实践
dongwei_6688
django
注意:本文基于 Django 1.8.2 版本
生成数据库迁移脚本(python 脚本)
python manage.py makemigrations polls
说明:polls 是你的应用名字,运行该命令时需要根据你的应用名字进行调整
查看该次迁移需要执行的 SQL 语句(只查看语句,并不应用到数据库上):
python manage.p
- 阶乘算法之一N! 末尾有多少个零
周凡杨
java算法阶乘面试效率
&n
- spring注入servlet
g21121
Spring注入
传统的配置方法是无法将bean或属性直接注入到servlet中的,配置代理servlet亦比较麻烦,这里其实有比较简单的方法,其实就是在servlet的init()方法中加入要注入的内容:
ServletContext application = getServletContext();
WebApplicationContext wac = WebApplicationContextUtil
- Jenkins 命令行操作说明文档
510888780
centos
假设Jenkins的URL为http://22.11.140.38:9080/jenkins/
基本的格式为
java
基本的格式为
java -jar jenkins-cli.jar [-s JENKINS_URL] command [options][args]
下面具体介绍各个命令的作用及基本使用方法
1. &nb
- UnicodeBlock检测中文用法
布衣凌宇
UnicodeBlock
/** * 判断输入的是汉字 */ public static boolean isChinese(char c) { Character.UnicodeBlock ub = Character.UnicodeBlock.of(c);
- java下实现调用oracle的存储过程和函数
aijuans
javaorale
1.创建表:STOCK_PRICES
2.插入测试数据:
3.建立一个返回游标:
PKG_PUB_UTILS
4.创建和存储过程:P_GET_PRICE
5.创建函数:
6.JAVA调用存储过程返回结果集
JDBCoracle10G_INVO
- Velocity Toolbox
antlove
模板toolboxvelocity
velocity.VelocityUtil
package velocity;
import org.apache.velocity.Template;
import org.apache.velocity.app.Velocity;
import org.apache.velocity.app.VelocityEngine;
import org.apache.velocity.c
- JAVA正则表达式匹配基础
百合不是茶
java正则表达式的匹配
正则表达式;提高程序的性能,简化代码,提高代码的可读性,简化对字符串的操作
正则表达式的用途;
字符串的匹配
字符串的分割
字符串的查找
字符串的替换
正则表达式的验证语法
[a] //[]表示这个字符只出现一次 ,[a] 表示a只出现一
- 是否使用EL表达式的配置
bijian1013
jspweb.xmlELEasyTemplate
今天在开发过程中发现一个细节问题,由于前端采用EasyTemplate模板方法实现数据展示,但老是不能正常显示出来。后来发现竟是EL将我的EasyTemplate的${...}解释执行了,导致我的模板不能正常展示后台数据。
网
- 精通Oracle10编程SQL(1-3)PLSQL基础
bijian1013
oracle数据库plsql
--只包含执行部分的PL/SQL块
--set serveroutput off
begin
dbms_output.put_line('Hello,everyone!');
end;
select * from emp;
--包含定义部分和执行部分的PL/SQL块
declare
v_ename varchar2(5);
begin
select
- 【Nginx三】Nginx作为反向代理服务器
bit1129
nginx
Nginx一个常用的功能是作为代理服务器。代理服务器通常完成如下的功能:
接受客户端请求
将请求转发给被代理的服务器
从被代理的服务器获得响应结果
把响应结果返回给客户端
实例
本文把Nginx配置成一个简单的代理服务器
对于静态的html和图片,直接从Nginx获取
对于动态的页面,例如JSP或者Servlet,Nginx则将请求转发给Res
- Plugin execution not covered by lifecycle configuration: org.apache.maven.plugin
blackproof
maven报错
转:http://stackoverflow.com/questions/6352208/how-to-solve-plugin-execution-not-covered-by-lifecycle-configuration-for-sprin
maven报错:
Plugin execution not covered by lifecycle configuration:
- 发布docker程序到marathon
ronin47
docker 发布应用
1 发布docker程序到marathon 1.1 搭建私有docker registry 1.1.1 安装docker regisry
docker pull docker-registry
docker run -t -p 5000:5000 docker-registry
下载docker镜像并发布到私有registry
docker pull consol/tomcat-8.0
- java-57-用两个栈实现队列&&用两个队列实现一个栈
bylijinnan
java
import java.util.ArrayList;
import java.util.List;
import java.util.Stack;
/*
* Q 57 用两个栈实现队列
*/
public class QueueImplementByTwoStacks {
private Stack<Integer> stack1;
pr
- Nginx配置性能优化
cfyme
nginx
转载地址:http://blog.csdn.net/xifeijian/article/details/20956605
大多数的Nginx安装指南告诉你如下基础知识——通过apt-get安装,修改这里或那里的几行配置,好了,你已经有了一个Web服务器了。而且,在大多数情况下,一个常规安装的nginx对你的网站来说已经能很好地工作了。然而,如果你真的想挤压出Nginx的性能,你必
- [JAVA图形图像]JAVA体系需要稳扎稳打,逐步推进图像图形处理技术
comsci
java
对图形图像进行精确处理,需要大量的数学工具,即使是从底层硬件模拟层开始设计,也离不开大量的数学工具包,因为我认为,JAVA语言体系在图形图像处理模块上面的研发工作,需要从开发一些基础的,类似实时数学函数构造器和解析器的软件包入手,而不是急于利用第三方代码工具来实现一个不严格的图形图像处理软件......
&nb
- MonkeyRunner的使用
dai_lm
androidMonkeyRunner
要使用MonkeyRunner,就要学习使用Python,哎
先抄一段官方doc里的代码
作用是启动一个程序(应该是启动程序默认的Activity),然后按MENU键,并截屏
# Imports the monkeyrunner modules used by this program
from com.android.monkeyrunner import MonkeyRun
- Hadoop-- 海量文件的分布式计算处理方案
datamachine
mapreducehadoop分布式计算
csdn的一个关于hadoop的分布式处理方案,存档。
原帖:http://blog.csdn.net/calvinxiu/article/details/1506112。
Hadoop 是Google MapReduce的一个Java实现。MapReduce是一种简化的分布式编程模式,让程序自动分布到一个由普通机器组成的超大集群上并发执行。就如同ja
- 以資料庫驗證登入
dcj3sjt126com
yii
以資料庫驗證登入
由於 Yii 內定的原始框架程式, 採用綁定在UserIdentity.php 的 demo 與 admin 帳號密碼: public function authenticate() { $users=array( &nbs
- github做webhooks:[2]php版本自动触发更新
dcj3sjt126com
githubgitwebhooks
上次已经说过了如何在github控制面板做查看url的返回信息了。这次就到了直接贴钩子代码的时候了。
工具/原料
git
github
方法/步骤
在github的setting里面的webhooks里把我们的url地址填进去。
钩子更新的代码如下: error_reportin
- Eos开发常用表达式
蕃薯耀
Eos开发Eos入门Eos开发常用表达式
Eos开发常用表达式
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
蕃薯耀 2014年8月18日 15:03:35 星期一
&
- SpringSecurity3.X--SpEL 表达式
hanqunfeng
SpringSecurity
使用 Spring 表达式语言配置访问控制,要实现这一功能的直接方式是在<http>配置元素上添加 use-expressions 属性:
<http auto-config="true" use-expressions="true">
这样就会在投票器中自动增加一个投票器:org.springframework
- Redis vs Memcache
IXHONG
redis
1. Redis中,并不是所有的数据都一直存储在内存中的,这是和Memcached相比一个最大的区别。
2. Redis不仅仅支持简单的k/v类型的数据,同时还提供list,set,hash等数据结构的存储。
3. Redis支持数据的备份,即master-slave模式的数据备份。
4. Redis支持数据的持久化,可以将内存中的数据保持在磁盘中,重启的时候可以再次加载进行使用。
Red
- Python - 装饰器使用过程中的误区解读
kvhur
JavaScriptjqueryhtml5css
大家都知道装饰器是一个很著名的设计模式,经常被用于AOP(面向切面编程)的场景,较为经典的有插入日志,性能测试,事务处理,Web权限校验, Cache等。
原文链接:http://www.gbtags.com/gb/share/5563.htm
Python语言本身提供了装饰器语法(@),典型的装饰器实现如下:
@function_wrapper
de
- 架构师之mybatis-----update 带case when 针对多种情况更新
nannan408
case when
1.前言.
如题.
2. 代码.
<update id="batchUpdate" parameterType="java.util.List">
<foreach collection="list" item="list" index=&
- Algorithm算法视频教程
栏目记者
Algorithm算法
课程:Algorithm算法视频教程
百度网盘下载地址: http://pan.baidu.com/s/1qWFjjQW 密码: 2mji
程序写的好不好,还得看算法屌不屌!Algorithm算法博大精深。
一、课程内容:
课时1、算法的基本概念 + Sequential search
课时2、Binary search
课时3、Hash table
课时4、Algor
- C语言算法之冒泡排序
qiufeihu
c算法
任意输入10个数字由小到大进行排序。
代码:
#include <stdio.h>
int main()
{
int i,j,t,a[11]; /*定义变量及数组为基本类型*/
for(i = 1;i < 11;i++){
scanf("%d",&a[i]); /*从键盘中输入10个数*/
}
for
- JSP异常处理
wyzuomumu
Webjsp
1.在可能发生异常的网页中通过指令将HTTP请求转发给另一个专门处理异常的网页中:
<%@ page errorPage="errors.jsp"%>
2.在处理异常的网页中做如下声明:
errors.jsp:
<%@ page isErrorPage="true"%>,这样设置完后就可以在网页中直接访问exc