- 【笔记】自然语言处理NLP---概论
xhanZ
NLP相关
(from人文学院开设课程)目录1.自然语言处理概论1.1自然语言处理研究的意义、历史与现状1.1.1自然语言的特点1.1.2自然语言处理研究的意义1.1.3国外研究现状1.2NLP的方法、特点和规律1.2.1理性主义与经验主义1.2.2语料库语言学:经验主义研究方法1.2.3汉语语言处理的方法1.2.4基于知识图谱的深度学习1.自然语言处理概论1.1自然语言处理研究的意义、历史与现状1.1.1自
- 大模型书籍推荐:从头开始构建一个大型语言模型(含PDF免费)《Build a Large Language Model (From Scratch)》
AI女王
语言模型pdf人工智能AI大模型大模型大语言模型书籍
通过从头开始构建一个大型语言模型,了解如何创建、训练和调整大型语言模型(LLMs)!一、构建大型语言模型(从头开始)在《构建大型语言模型(从头开始)》中,你将了解如何LLMs从内到外工作。在这本富有洞察力的书中,畅销书作家塞巴斯蒂安·拉施卡(SebastianRaschka)将指导你逐步创建自己的LLM,用清晰的文字、图表和示例解释每个阶段。你将从最初的设计和创建到通用语料库的预训练,一直到特定任
- 【拥抱AI】浅谈Prompt的书写规范及要点
奔跑草-
人工智能人工智能promptRAGAI编程大模型LLMAIAgent
Prompt是什么?Prompt是一种技术,它通过自然语言处理来引导用户与机器之间的交互。在人工智能领域,Prompt通常用于生成文本,例如对话系统、机器翻译和文本摘要等应用。它也用于训练模型,以使其能够理解和生成人类语言。Prompt的工作原理是通过建立相应的语料库和语义解析模型,将自然语言转换为机器可识别的指令。在大模型时代,Prompt的使用尤为重要,因为它可以帮助模型更好地理解用户的意图并
- 基于Langchain的大模型RAG技术介绍(附示例代码)
赵放-AI
AIlangchain人工智能chatgptpython
一、RAG简介在大模型技术的迅速发展下,涌现了各种庞大的模型,形成了一场所谓的‘百模大战’。这些模型在大小和性能上各有所长,但大多数都是在通用语料库上进行训练的,因此它们只具备通用知识,对于专业领域的知识了解较少。由于训练大模型的成本颇高,许多专业领域难以负担这一费用,但专业人士又希望利用大模型的强大能力解决专业问题。为解决这一问题,出现了两种技术路线:一种是通过使用专业领域的数据集微调通用大模型
- RAFT: Adapting Language Model to Domain Specific RAG
UnknownBody
RAGforLLM语言模型人工智能自然语言处理
本文是LLM系列文章,针对《RAFT:AdaptingLanguageModeltoDomainSpecificRAG》的翻译。RAFT:使语言模型适应特定领域的RAG摘要1引言2LLM用于开卷考试3RAFT4评估5RAFT推广到Top-KRAG6相关工作7结论摘要在文本数据的大型语料库上预训练大型语言模型(LLM)现在是一种标准范式。当将这些LLM用于许多下游应用程序时,通常会通过基于RAG的计
- 【大模型系列篇】预训练模型:BERT & GPT
木亦汐丫
大模型bertgpt人工智能预训练模型大模型
2018年,Google首次推出BERT(BidirectionalEncoderRepresentationsfromTransformers)。该模型是在大量文本语料库上结合无监督和监督学习进行训练的。BERT的目标是创建一种语言模型,可以理解句子中单词的上下文和含义,同时考虑到它前后出现的单词。2018年,OpenAI首次推出GPT(GenerativePre-trainedTransfor
- NLP从零开始------17.文本中阶处理之序列到序列模型(2)
人生百态,人生如梦
nlp从零开始自然语言处理人工智能
3.学习序列到序列模型可以看成一种条件语言模型,以源句x为条件计算目标句的条件概率该条件概率通过概率乘法公式分解为从左到右每个词的条件概率之积:序列到序列模型的监督学习需要使用平行语料,其中每个数据点都包含一对源句和目标句。以中译英机器翻译为例,平行语料的每个数据点就是一句中文句子和对应的一句英文句子。机器翻译领域较为有名的平行语料库来自机器翻译研讨会(workshoponmachinetrans
- graphrag论文精读
Ramos_zl
人工智能
论文精读:FromLocaltoGlobal:AGraphRAGApproachtoQuery-FocusedSummarization1.研究背景与问题在大语言模型(LLMs)的应用中,检索增强生成(RAG)方法通常用于从外部知识源检索相关信息,从而回答用户的问题。然而,RAG方法在处理涉及整个文本语料库的全局问题时效果不佳,比如“数据集中主要的主题是什么?”这些问题本质上是一个面向查询的总结任
- FrameNet介绍——从同义词语义知识库到框架语义知识库
禾风wyh
语义通信语义知识库
FrameNet是一个为期三年的项目,获得了NSF(美国国家科学基金会)的支持,专注于基于语料库的计算词典编纂。项目特点FrameNet承诺使用语料库证据(corpusevidence)来进行语义和句法的概括;并对目标词(主要是名词、形容词和动词)的搭配方式进行表示,其中语义部分使用了框架语义学。最终的数据库将包含所描述词语的语义框架描述,以及几千个词语和短语的搭配表示(语义和句法),每个词语或短
- 语料清洗软件工具测评推荐
热爱分享的博士僧
数据分析学习python人工智能深度学习
确定哪个语料清洗软件工具更好用,实际上取决于你的具体需求、使用场景以及个人偏好。每个工具都有其独特的优势和适用场景。以下是对之前提到的几个工具的简要评估,以帮助你做出选择:MicrosoftWord:如果你已经熟悉Word的操作,并且需要处理的语料库规模不大,那么Word可能是一个很好的选择。它提供了直观的界面和易于使用的查找与替换功能,特别是通过通配符可以实现复杂的文本匹配和替换。但是,对于大规
- 常见的NLP处理框架介绍!
weixin_54503231
自然语言处理人工智能
自然语言处理(NLP)处理框架是指一系列用于开发、实现和部署自然语言处理应用程序的工具、库和框架。以下是一些主要的NLP处理框架的介绍:一、NLTK(NaturalLanguageToolkit)概述:NLTK是Python编程语言中最著名的NLP库之一,由StevenBird、EwanKlein和EdwardLoper等人开发。它提供了丰富的资源,包括文本处理、语料库、分类、标记、解析、语义推理
- ChatGPT:智能论文写作指南,让您成为写作高手
AI臻蚌
chatgpt4.0chatgptchatgpt人工智能AI写作
ChatGPT无限次数:点击直达写作是学术研究中不可或缺的一环,然而,对于许多人来说,写作往往是一项艰巨而费时的任务。但是,现在有了ChatGPT,您将能够以前所未有的速度和准确性编写高质量的论文。本文将向您介绍如何利用ChatGPT的强大功能成为写作高手,并为您提供一些示例,展示其在不同领域的应用。1.简介ChatGPT是一种基于人工智能的语言模型,它可以理解并生成人类语言。通过训练大量的语料库
- 汉语教学备课工具推荐
Mil_Pasos
BCC语料库网站地址:http://bcc.blcu.edu.cn150亿字的超大容量,堪称全面反映当前社会语言生活的大规模语料库。既有书面语体,又有口语体语料。它的搜索功能堪称经典,输入相关的文字和代码可以实现语料精确查找,这个对于老师想确定词语用法和搭配非常有用。BCC语料库汉语分级阅读指南针网站地址:www.languagedata.net初级词,高级词分别是哪些?教案准备的词句会不会超纲?
- 认知篇-剖析LLM基座
随着深度学习技术的不断发展,语言模型(LanguageModel,LM)在自然语言处理领域的应用越来越广泛。其中,基于Transformer架构的预训练语言模型(PretrainedLanguageModel,PLM)更是成为了研究的热点。在众多PLM中,基于大规模语料库的预训练语言模型(LargeLanguageModel,LLM)以其强大的语言生成和理解能力,受到了广泛的关注。本文将深入探讨L
- openai公司的chatgpt-3.5参数库内还未增加sora的语料信息
yrldjsbk
神经网络技术gpt-3人工智能深度学习
openai公司的chatgpt-3.5参数库内还未增加sora的语料信息!我想通过openai公司的chatgpt3.5来了解一下关于sora的技术信息,结果呢,它竟然回答不知道sora是什么。看来,sora的语料库信息还未来得及加入chatgpt3.5的训练模型中。如图,chatgpt3.5回答了,说它不知道。以后我会陆续和大家分享,各种前言的大数据模型技术信息,以及和人工智能,神经网络技术有
- 【摸鱼分享】2021年度网络用语大盘点!里面有你今年的关键词吗?
摸鱼人日历
转眼间,我们的2021年余额已不足每年这个时候各种各样的年度盘点层出不穷国家语言资源监测与研究中心发布《2021年度十大网络用语》来看看你最爱说的词上榜没?收录方法“2021年度十大网络用语”是基于国家语言资源监测语料库(网络媒体部分),采用“以智能信息处理技术为主,兼顾领域专家意见和相关站点收录情况”的方式获得的。监测语料库包含视频弹幕、网络论坛、新闻等不同媒体形式的语言资源。其中,本次发布涉及
- 基于 InternLM 和 LangChain 搭建你的知识库(三)
骆驼穿针眼
langchain
基于InternLM和LangChain搭建你的知识库大模型开发范式Finetune在大型语言模型中,Finetune(微调)是一种技术,用于调整预训练的模型以提高其在特定任务或数据集上的表现。这种方法通常涉及以下步骤:预训练模型:首先,需要一个预训练的大型语言模型,如GPT、BERT或其他变体。这些模型通常在大型文本语料库上训练,以学习语言的广泛特征和结构。特定任务的数据:接着,收集和准备针对特
- gpt4国内怎么用 gpt4和chatGPT的区别是什么
氧惠佣金真的高
一、GPT是什么?GPT是一种人工智能技术,全称为"GenerativePre-trainedTransformer",即生成式预训练转换器。它由OpenAI开发,通过大规模的预训练模型和深度学习算法,能够生成高质量的自然语言文本。GPT的工作原理是通过先前的大规模语料库进行训练,从而使模型能够理解语言的结构和上下文。这使得GPT能够以人类般的方式生成自然语言文本,回答问题,进行对话等。大家好,我
- DL4J中文文档/DataVec/读取器
hello风一样的男子
读取器读取器从存储中的数据集迭代记录,并将数据加载到数据向量中。除了数据集中的单个条目之外,阅读器的用处包括:如果想要在语料库上训练文本生成器,或是以编程方式将两个条目组合在一起形成新的记录的时候该怎么办?读取器实现对于复杂的文件类型或分布式存储机制是有用的。读取器返回记录记录中每一列的Writable类。这些类用于将每个记录转换为张量/NDArray格式。使用每个读取器实现都扩展了BaseRec
- 神经语言程式(NLP)项目的15 个开源训练数据集
suoge223
机器学习实用指南自然语言处理人工智能python大数据
一个聊天机器人需要大量的训练数据,以便在无需人工干预的情况下快速解决用户的询问。然而,聊天机器人开发的主要瓶颈是获取现实的、面向任务的对话数据来训练这些基于机器学习的系统。我们整理了训练聊天机器人所需的对话数据集,包括问答数据、客户支持数据、对话数据和多语言数据。用于聊天机器人训练的问答数据集问题-答案数据集:该语料库包括维基百科文章、从中手动生成的事实问题以及这些问题的手动生成的答案,用于学术研
- LLM之RAG实战(二十五)| 使用LlamaIndex和BM25重排序实践
wshzd
RAG笔记easyui前端javascript
本文,我们将研究高级RAG方法的中的重排序优化方法以及其与普通RAG相比的关键差异。一、什么是RAG?检索增强生成(RAG)是一种复杂的自然语言处理方法,它包括两个不同的步骤:信息检索和生成语言建模。这种方法旨在为语言模型提供访问外部数据源,来提高其在生成响应时的准确性和相关性,从而增强语言模型的能力。1.1检索组件:目的:检索组件的主要功能是响应查询或提示,从大型数据库或语料库中提取相关文档或信
- python使用nltk进行中文语料库的词频分布统计
Love _YourSelf_CS
自然语言处理python自然语言处理nlp
文章目录问题描述构建语料库统计字数统计词频分布问题描述根据给定的语料库,统计其中共包含多少字、平均每个词使用了多少次以及常用词的分布以及累计分布情况。本文就以大秦帝国第一部小说为例进行实验本文可以使用在毕业设计中,如果有帮助采用请点赞关注下呗,欢迎大家交流技术,也可以私聊毕设题目交流解决方法构建语料库因为我们要处理的语言是中文,部分方法NLTK是针对英文语料的,中文语料不通用(典型的就是分词)。这
- python nltk中文_NLTK中文词性标注
weixin_39560064
pythonnltk中文
1.说明学习自然语言处理,一定会参考NLTK,主要是学习它的思路,从设计地角度看看能做什么.其本质就是把语言看成字符串,字符串组,字符串集,寻找其间规律.NLTK是多语言支持的,但目前网上的例程几乎没有用NLTK处理中文的,其实可以做。比如标注功能,它自身提供了带标注的中文语库(繁体语料库sinica_treebank).下面来看看怎样通过数据训练来实现中文词性自动标注.可以利用它来标注中本,也可
- Python与自然语言处理库Gensim实战
心梓知识
python自然语言处理easyui
一、Gensim简介Gensim是一款Python自然语言处理库。它能够自动化训练出一个文本语料库,然后用该语料库来训练出一个词向量模型。在语料库中,每个语料库都是由一个个文档组成,每个文档则是由若干个单词组成。Gensim相对于其他Python自然语言处理库的优点在于它的速度和内存占用率较低。同时它还提供了许多文本处理的功能,比如文档相似度计算和主题建模等。二、安装Gensim在安装Gensim
- 使用ChatGpt和文心一言辅助文章创作
skywalk8163
人工智能水浒英雄学ITchatgpt飞桨文心一言人工智能
近期在写数字水浒系列文章,使用了ChatGpt和文心一言进行辅助创作,整体感受不错,提高了工作效率。在使用过程中,感觉文心的中文能力更强一些,主要体现在:1语料库更大,比如对水浒传了解的更多2对中文的理解更细致一些。所以大部分都是使用文心一言进行辅助文章创作。写作过程中,主要使用了润色、缩写、剧情承转、自我创作和文生图等五部分。润色部分是最可靠的帮手,一般润色的时候会让它顺便改错(或者它已经自动把
- NLP_Seq2Seq编码器-解码器架构
you_are_my_sunshine*
NLP自然语言处理人工智能
文章目录Seq2Seq架构构建简单Seq2Seq架构1.构建实验语料库和词汇表2.生成Seq2Seq训练数据3.定义编码器和解码器类4.定义Seq2Seq架构5.训练Seq2Seq架构6.测试Seq2Seq架构归纳Seq2Seq编码器-解码器架构小结Seq2Seq架构起初,人们尝试使用一个独立的RNN来解决这种序列到序列的NLP任务,但发现效果并不理想。这是因为RNN在同时处理输入和输出序列(既负
- NLP_神经概率语言模型(NPLM)
you_are_my_sunshine*
NLP自然语言处理语言模型人工智能
文章目录NPLM的起源NPLM的实现1.构建实验语料库2.生成NPLM训练数据3.定义NPLM4.实例化NPLM5.训练NPLM6.用NPLM预测新词NPLM小结NPLM的起源在NPLM之前,传统的语言模型主要依赖于最基本的N-Gram技术,通过统计词汇的共现频率来计算词汇组合的概率。然而,这种方法在处理稀疏数据和长距离依剌时遇到了困难。NPLM是一种将词汇映射到连续向量空间的方法,其核心思想是利
- NLP_Bag-Of-Words(词袋模型)
you_are_my_sunshine*
NLP自然语言处理人工智能
文章目录词袋模型用词袋模型计算文本相似度1.构建实验语料库2.给句子分词3.创建词汇表4.生成词袋表示5.计算余弦相似度6.可视化余弦相似度词袋模型小结词袋模型词袋模型是一种简单的文本表示方法,也是自然语言处理的一个经典模型。它将文本中的词看作一个个独立的个体,不考虑它们在句子中的顺序,只关心每个词出现的频次,如下图所示用词袋模型计算文本相似度1.构建实验语料库#构建一个数据集corpus=["我
- NLP_词的向量表示Word2Vec 和 Embedding
you_are_my_sunshine*
NLP自然语言处理word2vecembedding
文章目录词向量Word2Vec:CBOW模型和Skip-Gram模型通过nn.Embedding来实现词嵌入Word2Vec小结词向量下面这张图就形象地呈现了词向量的内涵:把词转化为向量,从而捕捉词与词之间的语义和句法关系,使得具有相似含义或相关性的词语在向量空间中距离较近。我们把语料库中的词和某些上下文信息,都“嵌入”了向量表示中。将词映射到向量空间时,会将这个词和它周围的一些词语一起学习,这就
- GPT原始论文:Improving Language Understanding by Generative Pre-Training论文翻译
iKang_dlut
gpt人工智能深度学习
1摘要自然语理解包括文本蕴含、问题回答、语义相似性评估和文档分类等一系列多样化的任务。尽管大量未标注的文本语料库很丰富,但用于学习这些特定任务的标注数据却很稀缺,这使得基于区分性训练的模型难以充分发挥作用。我们展示了通过在多样化的未标注文本语料库上对语言模型进行生成式预训练,随后对每个特定任务进行区分性微调,可以实现这些任务的大幅度改进。与以往的方法不同,我们在微调过程中使用了任务感知的输入转换,
- java数字签名三种方式
知了ing
javajdk
以下3钟数字签名都是基于jdk7的
1,RSA
String password="test";
// 1.初始化密钥
KeyPairGenerator keyPairGenerator = KeyPairGenerator.getInstance("RSA");
keyPairGenerator.initialize(51
- Hibernate学习笔记
caoyong
Hibernate
1>、Hibernate是数据访问层框架,是一个ORM(Object Relation Mapping)框架,作者为:Gavin King
2>、搭建Hibernate的开发环境
a>、添加jar包:
aa>、hibernatte开发包中/lib/required/所
- 设计模式之装饰器模式Decorator(结构型)
漂泊一剑客
Decorator
1. 概述
若你从事过面向对象开发,实现给一个类或对象增加行为,使用继承机制,这是所有面向对象语言的一个基本特性。如果已经存在的一个类缺少某些方法,或者须要给方法添加更多的功能(魅力),你也许会仅仅继承这个类来产生一个新类—这建立在额外的代码上。
- 读取磁盘文件txt,并输入String
一炮送你回车库
String
public static void main(String[] args) throws IOException {
String fileContent = readFileContent("d:/aaa.txt");
System.out.println(fileContent);
- js三级联动下拉框
3213213333332132
三级联动
//三级联动
省/直辖市<select id="province"></select>
市/省直辖<select id="city"></select>
县/区 <select id="area"></select>
- erlang之parse_transform编译选项的应用
616050468
parse_transform游戏服务器属性同步abstract_code
最近使用erlang重构了游戏服务器的所有代码,之前看过C++/lua写的服务器引擎代码,引擎实现了玩家属性自动同步给前端和增量更新玩家数据到数据库的功能,这也是现在很多游戏服务器的优化方向,在引擎层面去解决数据同步和数据持久化,数据发生变化了业务层不需要关心怎么去同步给前端。由于游戏过程中玩家每个业务中玩家数据更改的量其实是很少
- JAVA JSON的解析
darkranger
java
// {
// “Total”:“条数”,
// Code: 1,
//
// “PaymentItems”:[
// {
// “PaymentItemID”:”支款单ID”,
// “PaymentCode”:”支款单编号”,
// “PaymentTime”:”支款日期”,
// ”ContractNo”:”合同号”,
//
- POJ-1273-Drainage Ditches
aijuans
ACM_POJ
POJ-1273-Drainage Ditches
http://poj.org/problem?id=1273
基本的最大流,按LRJ的白书写的
#include<iostream>
#include<cstring>
#include<queue>
using namespace std;
#define INF 0x7fffffff
int ma
- 工作流Activiti5表的命名及含义
atongyeye
工作流Activiti
activiti5 - http://activiti.org/designer/update在线插件安装
activiti5一共23张表
Activiti的表都以ACT_开头。 第二部分是表示表的用途的两个字母标识。 用途也和服务的API对应。
ACT_RE_*: 'RE'表示repository。 这个前缀的表包含了流程定义和流程静态资源 (图片,规则,等等)。
A
- android的广播机制和广播的简单使用
百合不是茶
android广播机制广播的注册
Android广播机制简介 在Android中,有一些操作完成以后,会发送广播,比如说发出一条短信,或打出一个电话,如果某个程序接收了这个广播,就会做相应的处理。这个广播跟我们传统意义中的电台广播有些相似之处。之所以叫做广播,就是因为它只负责“说”而不管你“听不听”,也就是不管你接收方如何处理。另外,广播可以被不只一个应用程序所接收,当然也可能不被任何应
- Spring事务传播行为详解
bijian1013
javaspring事务传播行为
在service类前加上@Transactional,声明这个service所有方法需要事务管理。每一个业务方法开始时都会打开一个事务。
Spring默认情况下会对运行期例外(RunTimeException)进行事务回滚。这
- eidtplus operate
征客丶
eidtplus
开启列模式: Alt+C 鼠标选择 OR Alt+鼠标左键拖动
列模式替换或复制内容(多行):
右键-->格式-->填充所选内容-->选择相应操作
OR
Ctrl+Shift+V(复制多行数据,必须行数一致)
-------------------------------------------------------
- 【Kafka一】Kafka入门
bit1129
kafka
这篇文章来自Spark集成Kafka(http://bit1129.iteye.com/blog/2174765),这里把它单独取出来,作为Kafka的入门吧
下载Kafka
http://mirror.bit.edu.cn/apache/kafka/0.8.1.1/kafka_2.10-0.8.1.1.tgz
2.10表示Scala的版本,而0.8.1.1表示Kafka
- Spring 事务实现机制
BlueSkator
spring代理事务
Spring是以代理的方式实现对事务的管理。我们在Action中所使用的Service对象,其实是代理对象的实例,并不是我们所写的Service对象实例。既然是两个不同的对象,那为什么我们在Action中可以象使用Service对象一样的使用代理对象呢?为了说明问题,假设有个Service类叫AService,它的Spring事务代理类为AProxyService,AService实现了一个接口
- bootstrap源码学习与示例:bootstrap-dropdown(转帖)
BreakingBad
bootstrapdropdown
bootstrap-dropdown组件是个烂东西,我读后的整体感觉。
一个下拉开菜单的设计:
<ul class="nav pull-right">
<li id="fat-menu" class="dropdown">
- 读《研磨设计模式》-代码笔记-中介者模式-Mediator
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
/*
* 中介者模式(Mediator):用一个中介对象来封装一系列的对象交互。
* 中介者使各对象不需要显式地相互引用,从而使其耦合松散,而且可以独立地改变它们之间的交互。
*
* 在我看来,Mediator模式是把多个对象(
- 常用代码记录
chenjunt3
UIExcelJ#
1、单据设置某行或某字段不能修改
//i是行号,"cash"是字段名称
getBillCardPanelWrapper().getBillCardPanel().getBillModel().setCellEditable(i, "cash", false);
//取得单据表体所有项用以上语句做循环就能设置整行了
getBillC
- 搜索引擎与工作流引擎
comsci
算法工作搜索引擎网络应用
最近在公司做和搜索有关的工作,(只是简单的应用开源工具集成到自己的产品中)工作流系统的进一步设计暂时放在一边了,偶然看到谷歌的研究员吴军写的数学之美系列中的搜索引擎与图论这篇文章中的介绍,我发现这样一个关系(仅仅是猜想)
-----搜索引擎和流程引擎的基础--都是图论,至少像在我在JWFD中引擎算法中用到的是自定义的广度优先
- oracle Health Monitor
daizj
oracleHealth Monitor
About Health Monitor
Beginning with Release 11g, Oracle Database includes a framework called Health Monitor for running diagnostic checks on the database.
About Health Monitor Checks
Health M
- JSON字符串转换为对象
dieslrae
javajson
作为前言,首先是要吐槽一下公司的脑残编译部署方式,web和core分开部署本来没什么问题,但是这丫居然不把json的包作为基础包而作为web的包,导致了core端不能使用,而且我们的core是可以当web来用的(不要在意这些细节),所以在core中处理json串就是个问题.没办法,跟编译那帮人也扯不清楚,只有自己写json的解析了.
- C语言学习八结构体,综合应用,学生管理系统
dcj3sjt126com
C语言
实现功能的代码:
# include <stdio.h>
# include <malloc.h>
struct Student
{
int age;
float score;
char name[100];
};
int main(void)
{
int len;
struct Student * pArr;
int i,
- vagrant学习笔记
dcj3sjt126com
vagrant
想了解多主机是如何定义和使用的, 所以又学习了一遍vagrant
1. vagrant virtualbox 下载安装
https://www.vagrantup.com/downloads.html
https://www.virtualbox.org/wiki/Downloads
查看安装在命令行输入vagrant
2.
- 14.性能优化-优化-软件配置优化
frank1234
软件配置性能优化
1.Tomcat线程池
修改tomcat的server.xml文件:
<Connector port="8080" protocol="HTTP/1.1" connectionTimeout="20000" redirectPort="8443" maxThreads="1200" m
- 一个不错的shell 脚本教程 入门级
HarborChung
linuxshell
一个不错的shell 脚本教程 入门级
建立一个脚本 Linux中有好多中不同的shell,但是通常我们使用bash (bourne again shell) 进行shell编程,因为bash是免费的并且很容易使用。所以在本文中笔者所提供的脚本都是使用bash(但是在大多数情况下,这些脚本同样可以在 bash的大姐,bourne shell中运行)。 如同其他语言一样
- Spring4新特性——核心容器的其他改进
jinnianshilongnian
spring动态代理spring4依赖注入
Spring4新特性——泛型限定式依赖注入
Spring4新特性——核心容器的其他改进
Spring4新特性——Web开发的增强
Spring4新特性——集成Bean Validation 1.1(JSR-349)到SpringMVC
Spring4新特性——Groovy Bean定义DSL
Spring4新特性——更好的Java泛型操作API
Spring4新
- Linux设置tomcat开机启动
liuxingguome
tomcatlinux开机自启动
执行命令sudo gedit /etc/init.d/tomcat6
然后把以下英文部分复制过去。(注意第一句#!/bin/sh如果不写,就不是一个shell文件。然后将对应的jdk和tomcat换成你自己的目录就行了。
#!/bin/bash
#
# /etc/rc.d/init.d/tomcat
# init script for tomcat precesses
- 第13章 Ajax进阶(下)
onestopweb
Ajax
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- Troubleshooting Crystal Reports off BW
blueoxygen
BO
http://wiki.sdn.sap.com/wiki/display/BOBJ/Troubleshooting+Crystal+Reports+off+BW#TroubleshootingCrystalReportsoffBW-TracingBOE
Quite useful, especially this part:
SAP BW connectivity
For t
- Java开发熟手该当心的11个错误
tomcat_oracle
javajvm多线程单元测试
#1、不在属性文件或XML文件中外化配置属性。比如,没有把批处理使用的线程数设置成可在属性文件中配置。你的批处理程序无论在DEV环境中,还是UAT(用户验收
测试)环境中,都可以顺畅无阻地运行,但是一旦部署在PROD 上,把它作为多线程程序处理更大的数据集时,就会抛出IOException,原因可能是JDBC驱动版本不同,也可能是#2中讨论的问题。如果线程数目 可以在属性文件中配置,那么使它成为
- 正则表达式大全
yang852220741
html编程正则表达式
今天向大家分享正则表达式大全,它可以大提高你的工作效率
正则表达式也可以被当作是一门语言,当你学习一门新的编程语言的时候,他们是一个小的子语言。初看时觉得它没有任何的意义,但是很多时候,你不得不阅读一些教程,或文章来理解这些简单的描述模式。
一、校验数字的表达式
数字:^[0-9]*$
n位的数字:^\d{n}$
至少n位的数字:^\d{n,}$
m-n位的数字:^\d{m,n}$