live555学习笔记8-RTSPClient分析

八 RTSPClient分析

有RTSPServer,当然就要有RTSPClient。
如果按照Server端的架构,想一下Client端各部分的组成可能是这样:
因为要连接RTSP server,所以RTSPClient要有TCP socket。当获取到server端的DESCRIBE后,应建立一个对应于ServerMediaSession的ClientMediaSession。对应每个Track,ClientMediaSession中应建立ClientMediaSubsession。当建立RTP Session时,应分别为所拥有的Track发送SETUP请求连接,在获取回应后,分别为所有的track建立RTP socket,然后请求PLAY,然后开始传输数据。事实是这样吗?只能分析代码了。


testProgs中的OpenRTSP是典型的RTSPClient示例,所以分析它吧。
main()函数在playCommon.cpp文件中。main()的流程比较简单,跟服务端差别不大:建立任务计划对象--建立环境对象--处理用户输入的参数(RTSP地址)--创建RTSPClient实例--发出第一个RTSP请求(可能是OPTIONS也可能是DESCRIBE)--进入Loop。


RTSP的tcp连接是在发送第一个RTSP请求时才建立的,在RTSPClient的那几个发请求的函数sendXXXXXXCommand()中最终都调用sendRequest(),sendRequest()中会跟据情况建立起TCP连接。在建立连接时马上向任务计划中加入处理从这个TCP接收数据的socket handler:RTSPClient::incomingDataHandler()。
下面就是发送RTSP请求,OPTIONS就不必看了,从请求DESCRIBE开始:

[cpp]  view plain copy
  1. void getSDPDescription(RTSPClient::responseHandler* afterFunc)  
  2. {  
  3.     ourRTSPClient->sendDescribeCommand(afterFunc, ourAuthenticator);  
  4. }  
  5. unsigned RTSPClient::sendDescribeCommand(responseHandler* responseHandler,  
  6.         Authenticator* authenticator)  
  7. {  
  8.     if (authenticator != NULL)  
  9.         fCurrentAuthenticator = *authenticator;  
  10.     return sendRequest(new RequestRecord(++fCSeq, "DESCRIBE", responseHandler));  
  11. }  
参数responseHandler是调用者提供的回调函数,用于在处理完请求的回应后再调用之。并且在这个回调函数中会发出下一个请求--所有的请求都是这样依次发出的。使用回调函数的原因主要是因为socket的发送与接收不是同步进行的。类RequestRecord就代表一个请求,它不但保存了RTSP请求相关的信息,而且保存了请求完成后的回调函数--就是responseHandler。有些请求发出时还没建立tcp连接,不能立即发送,则加入fRequestsAwaitingConnection队列;有些发出后要等待Server端的回应,就加入fRequestsAwaitingResponse队列,当收到回应后再从队列中把它取出。
由于RTSPClient::sendRequest()太复杂,就不列其代码了,其无非是建立起RTSP请求字符串然后用TCP socket发送之。


现在看一下收到DESCRIBE的回应后如何处理它。理论上是跟据媒体信息建立起MediaSession了,看看是不是这样:

[cpp]  view plain copy
  1. void continueAfterDESCRIBE(RTSPClient*, int resultCode, char* resultString)  
  2. {  
  3.     char* sdpDescription = resultString;  
  4.     //跟据SDP创建MediaSession。  
  5.     // Create a media session object from this SDP description:  
  6.     session = MediaSession::createNew(*env, sdpDescription);  
  7.     delete[] sdpDescription;  
  8.   
  9.     // Then, setup the "RTPSource"s for the session:  
  10.     MediaSubsessionIterator iter(*session);  
  11.     MediaSubsession *subsession;  
  12.     Boolean madeProgress = False;  
  13.     char const* singleMediumToTest = singleMedium;  
  14.     //循环所有的MediaSubsession,为每个设置其RTPSource的参数  
  15.     while ((subsession = iter.next()) != NULL) {  
  16.         //初始化subsession,在其中会建立RTP/RTCP socket以及RTPSource。  
  17.         if (subsession->initiate(simpleRTPoffsetArg)) {  
  18.             madeProgress = True;  
  19.             if (subsession->rtpSource() != NULL) {  
  20.                 // Because we're saving the incoming data, rather than playing  
  21.                 // it in real time, allow an especially large time threshold  
  22.                 // (1 second) for reordering misordered incoming packets:  
  23.                 unsigned const thresh = 1000000; // 1 second  
  24.                 subsession->rtpSource()->setPacketReorderingThresholdTime(thresh);  
  25.   
  26.                 // Set the RTP source's OS socket buffer size as appropriate - either if we were explicitly asked (using -B),  
  27.                 // or if the desired FileSink buffer size happens to be larger than the current OS socket buffer size.  
  28.                 // (The latter case is a heuristic, on the assumption that if the user asked for a large FileSink buffer size,  
  29.                 // then the input data rate may be large enough to justify increasing the OS socket buffer size also.)  
  30.                 int socketNum = subsession->rtpSource()->RTPgs()->socketNum();  
  31.                 unsigned curBufferSize = getReceiveBufferSize(*env,socketNum);  
  32.                 if (socketInputBufferSize > 0 || fileSinkBufferSize > curBufferSize) {  
  33.                     unsigned newBufferSize = socketInputBufferSize > 0 ?   
  34.                         socketInputBufferSize : fileSinkBufferSize;  
  35.                     newBufferSize = setReceiveBufferTo(*env, socketNum, newBufferSize);  
  36.                     if (socketInputBufferSize > 0) { // The user explicitly asked for the new socket buffer size; announce it:  
  37.                         *env  
  38.                                 << "Changed socket receive buffer size for the \""  
  39.                                 << subsession->mediumName() << "/"  
  40.                                 << subsession->codecName()  
  41.                                 << "\" subsession from " << curBufferSize  
  42.                                 << " to " << newBufferSize << " bytes\n";  
  43.                     }  
  44.                 }  
  45.             }  
  46.         }  
  47.     }  
  48.     if (!madeProgress)  
  49.         shutdown();  
  50.   
  51.     // Perform additional 'setup' on each subsession, before playing them:  
  52.     //下一步就是发送SETUP请求了。需要为每个Track分别发送一次。  
  53.     setupStreams();  
  54. }  
此函数被删掉很多枝叶,所以发现与原版不同请不要惊掉大牙。
的确在DESCRIBE回应后建立起了MediaSession,而且我们发现Client端的MediaSession不叫ClientMediaSesson,SubSession亦不是。我现在很想看看MediaSession与MediaSubsession的建立过程:

[cpp]  view plain copy
  1. MediaSession* MediaSession::createNew(UsageEnvironment& env,char const* sdpDescription)  
  2. {  
  3.     MediaSession* newSession = new MediaSession(env);  
  4.     if (newSession != NULL) {  
  5.         if (!newSession->initializeWithSDP(sdpDescription)) {  
  6.             delete newSession;  
  7.             return NULL;  
  8.         }  
  9.     }  
  10.   
  11.     return newSession;  
  12. }  

我可以告诉你,MediaSession的构造函数没什么可看的,那么就来看initializeWithSDP():
内容太多,不必看了,我大体说说吧:就是处理SDP,跟据每一行来初始化一些变量。当遇到"m="行时,就建立一个MediaSubsession,然后再处理这一行之下,下一个"m="行之上的行们,用这些参数初始化MediaSubsession的变量。循环往复,直到尽头。然而这其中并没有建立RTP socket。我们发现在continueAfterDESCRIBE()中,创建MediaSession之后又调用了subsession->initiate(simpleRTPoffsetArg),那么socket是不是在它里面创建的呢?look:

[cpp]  view plain copy
  1. Boolean MediaSubsession::initiate(int useSpecialRTPoffset)  
  2. {  
  3.     if (fReadSource != NULL)  
  4.         return True; // has already been initiated  
  5.   
  6.     do {  
  7.         if (fCodecName == NULL) {  
  8.             env().setResultMsg("Codec is unspecified");  
  9.             break;  
  10.         }  
  11.   
  12.         //创建RTP/RTCP sockets  
  13.         // Create RTP and RTCP 'Groupsocks' on which to receive incoming data.  
  14.         // (Groupsocks will work even for unicast addresses)  
  15.         struct in_addr tempAddr;  
  16.         tempAddr.s_addr = connectionEndpointAddress();  
  17.         // This could get changed later, as a result of a RTSP "SETUP"  
  18.   
  19.         if (fClientPortNum != 0) {  
  20.             //当server端指定了建议的client端口  
  21.             // The sockets' port numbers were specified for us.  Use these:  
  22.             fClientPortNum = fClientPortNum & ~1; // even  
  23.             if (isSSM()) {  
  24.                 fRTPSocket = new Groupsock(env(), tempAddr, fSourceFilterAddr,  
  25.                         fClientPortNum);  
  26.             } else {  
  27.                 fRTPSocket = new Groupsock(env(), tempAddr, fClientPortNum,  
  28.                         255);  
  29.             }  
  30.             if (fRTPSocket == NULL) {  
  31.                 env().setResultMsg("Failed to create RTP socket");  
  32.                 break;  
  33.             }  
  34.   
  35.             // Set our RTCP port to be the RTP port +1  
  36.             portNumBits const rtcpPortNum = fClientPortNum | 1;  
  37.             if (isSSM()) {  
  38.                 fRTCPSocket = new Groupsock(env(), tempAddr, fSourceFilterAddr,  
  39.                         rtcpPortNum);  
  40.             } else {  
  41.                 fRTCPSocket = new Groupsock(env(), tempAddr, rtcpPortNum, 255);  
  42.             }  
  43.             if (fRTCPSocket == NULL) {  
  44.                 char tmpBuf[100];  
  45.                 sprintf(tmpBuf, "Failed to create RTCP socket (port %d)",  
  46.                         rtcpPortNum);  
  47.                 env().setResultMsg(tmpBuf);  
  48.                 break;  
  49.             }  
  50.         } else {  
  51.             //Server端没有指定client端口,我们自己找一个。之所以做的这样复杂,是为了能找到连续的两个端口  
  52.             //RTP/RTCP的端口号不是要连续吗?还记得不?  
  53.             // Port numbers were not specified in advance, so we use ephemeral port numbers.  
  54.             // Create sockets until we get a port-number pair (even: RTP; even+1: RTCP).  
  55.             // We need to make sure that we don't keep trying to use the same bad port numbers over and over again.  
  56.             // so we store bad sockets in a table, and delete them all when we're done.  
  57.             HashTable* socketHashTable = HashTable::create(ONE_WORD_HASH_KEYS);  
  58.             if (socketHashTable == NULL)  
  59.                 break;  
  60.             Boolean success = False;  
  61.             NoReuse dummy; // ensures that our new ephemeral port number won't be one that's already in use  
  62.   
  63.             while (1) {  
  64.                 // Create a new socket:  
  65.                 if (isSSM()) {  
  66.                     fRTPSocket = new Groupsock(env(), tempAddr,  
  67.                             fSourceFilterAddr, 0);  
  68.                 } else {  
  69.                     fRTPSocket = new Groupsock(env(), tempAddr, 0, 255);  
  70.                 }  
  71.                 if (fRTPSocket == NULL) {  
  72.                     env().setResultMsg(  
  73.                             "MediaSession::initiate(): unable to create RTP and RTCP sockets");  
  74.                     break;  
  75.                 }  
  76.   
  77.                 // Get the client port number, and check whether it's even (for RTP):  
  78.                 Port clientPort(0);  
  79.                 if (!getSourcePort(env(), fRTPSocket->socketNum(),  
  80.                         clientPort)) {  
  81.                     break;  
  82.                 }  
  83.                 fClientPortNum = ntohs(clientPort.num());  
  84.                 if ((fClientPortNum & 1) != 0) { // it's odd  
  85.                     // Record this socket in our table, and keep trying:  
  86.                     unsigned key = (unsigned) fClientPortNum;  
  87.                     Groupsock* existing = (Groupsock*) socketHashTable->Add(  
  88.                             (char const*) key, fRTPSocket);  
  89.                     delete existing; // in case it wasn't NULL  
  90.                     continue;  
  91.                 }  
  92.   
  93.                 // Make sure we can use the next (i.e., odd) port number, for RTCP:  
  94.                 portNumBits rtcpPortNum = fClientPortNum | 1;  
  95.                 if (isSSM()) {  
  96.                     fRTCPSocket = new Groupsock(env(), tempAddr,  
  97.                             fSourceFilterAddr, rtcpPortNum);  
  98.                 } else {  
  99.                     fRTCPSocket = new Groupsock(env(), tempAddr, rtcpPortNum,  
  100.                             255);  
  101.                 }  
  102.                 if (fRTCPSocket != NULL && fRTCPSocket->socketNum() >= 0) {  
  103.                     // Success! Use these two sockets.  
  104.                     success = True;  
  105.                     break;  
  106.                 } else {  
  107.                     // We couldn't create the RTCP socket (perhaps that port number's already in use elsewhere?).  
  108.                     delete fRTCPSocket;  
  109.   
  110.                     // Record the first socket in our table, and keep trying:  
  111.                     unsigned key = (unsigned) fClientPortNum;  
  112.                     Groupsock* existing = (Groupsock*) socketHashTable->Add(  
  113.                             (char const*) key, fRTPSocket);  
  114.                     delete existing; // in case it wasn't NULL  
  115.                     continue;  
  116.                 }  
  117.             }  
  118.   
  119.             // Clean up the socket hash table (and contents):  
  120.             Groupsock* oldGS;  
  121.             while ((oldGS = (Groupsock*) socketHashTable->RemoveNext()) != NULL) {  
  122.                 delete oldGS;  
  123.             }  
  124.             delete socketHashTable;  
  125.   
  126.             if (!success)  
  127.                 break// a fatal error occurred trying to create the RTP and RTCP sockets; we can't continue  
  128.         }  
  129.   
  130.         // Try to use a big receive buffer for RTP - at least 0.1 second of  
  131.         // specified bandwidth and at least 50 KB  
  132.         unsigned rtpBufSize = fBandwidth * 25 / 2; // 1 kbps * 0.1 s = 12.5 bytes  
  133.         if (rtpBufSize < 50 * 1024)  
  134.             rtpBufSize = 50 * 1024;  
  135.         increaseReceiveBufferTo(env(), fRTPSocket->socketNum(), rtpBufSize);  
  136.   
  137.         // ASSERT: fRTPSocket != NULL && fRTCPSocket != NULL  
  138.         if (isSSM()) {  
  139.             // Special case for RTCP SSM: Send RTCP packets back to the source via unicast:  
  140.             fRTCPSocket->changeDestinationParameters(fSourceFilterAddr, 0, ~0);  
  141.         }  
  142.   
  143.         //创建RTPSource的地方  
  144.         // Create "fRTPSource" and "fReadSource":  
  145.         if (!createSourceObjects(useSpecialRTPoffset))  
  146.             break;  
  147.   
  148.         if (fReadSource == NULL) {  
  149.             env().setResultMsg("Failed to create read source");  
  150.             break;  
  151.         }  
  152.   
  153.         // Finally, create our RTCP instance. (It starts running automatically)  
  154.         if (fRTPSource != NULL) {  
  155.             // If bandwidth is specified, use it and add 5% for RTCP overhead.  
  156.             // Otherwise make a guess at 500 kbps.  
  157.             unsigned totSessionBandwidth =  
  158.                     fBandwidth ? fBandwidth + fBandwidth / 20 : 500;  
  159.             fRTCPInstance = RTCPInstance::createNew(env(), fRTCPSocket,  
  160.                     totSessionBandwidth, (unsigned char const*) fParent.CNAME(),  
  161.                     NULL /* we're a client */, fRTPSource);  
  162.             if (fRTCPInstance == NULL) {  
  163.                 env().setResultMsg("Failed to create RTCP instance");  
  164.                 break;  
  165.             }  
  166.         }  
  167.   
  168.         return True;  
  169.     } while (0);  
  170.   
  171.     //失败时执行到这里  
  172.     delete fRTPSocket;  
  173.     fRTPSocket = NULL;  
  174.     delete fRTCPSocket;  
  175.     fRTCPSocket = NULL;  
  176.     Medium::close(fRTCPInstance);  
  177.     fRTCPInstance = NULL;  
  178.     Medium::close(fReadSource);  
  179.     fReadSource = fRTPSource = NULL;  
  180.     fClientPortNum = 0;  
  181.     return False;  
  182. }  
是的,在其中创建了RTP/RTCP socket并创建了RTPSource,创建RTPSource在函数createSourceObjects()中,看一下:

[cpp]  view plain copy
  1. Boolean MediaSubsession::createSourceObjects(int useSpecialRTPoffset)  
  2. {  
  3.     do {  
  4.         // First, check "fProtocolName"  
  5.         if (strcmp(fProtocolName, "UDP") == 0) {  
  6.             // A UDP-packetized stream (*not* a RTP stream)  
  7.             fReadSource = BasicUDPSource::createNew(env(), fRTPSocket);  
  8.             fRTPSource = NULL; // Note!  
  9.   
  10.             if (strcmp(fCodecName, "MP2T") == 0) { // MPEG-2 Transport Stream  
  11.                 fReadSource = MPEG2TransportStreamFramer::createNew(env(),  
  12.                         fReadSource);  
  13.                 // this sets "durationInMicroseconds" correctly, based on the PCR values  
  14.             }  
  15.         } else {  
  16.             // Check "fCodecName" against the set of codecs that we support,  
  17.             // and create our RTP source accordingly  
  18.             // (Later make this code more efficient, as this set grows #####)  
  19.             // (Also, add more fmts that can be implemented by SimpleRTPSource#####)  
  20.             Boolean createSimpleRTPSource = False; // by default; can be changed below  
  21.             Boolean doNormalMBitRule = False; // default behavior if "createSimpleRTPSource" is True  
  22.             if (strcmp(fCodecName, "QCELP") == 0) { // QCELP audio  
  23.                 fReadSource = QCELPAudioRTPSource::createNew(env(), fRTPSocket,  
  24.                         fRTPSource, fRTPPayloadFormat, fRTPTimestampFrequency);  
  25.                 // Note that fReadSource will differ from fRTPSource in this case  
  26.             } else if (strcmp(fCodecName, "AMR") == 0) { // AMR audio (narrowband)  
  27.                 fReadSource = AMRAudioRTPSource::createNew(env(), fRTPSocket,  
  28.                         fRTPSource, fRTPPayloadFormat, 0 /*isWideband*/,  
  29.                         fNumChannels, fOctetalign, fInterleaving,  
  30.                         fRobustsorting, fCRC);  
  31.                 // Note that fReadSource will differ from fRTPSource in this case  
  32.             } else if (strcmp(fCodecName, "AMR-WB") == 0) { // AMR audio (wideband)  
  33.                 fReadSource = AMRAudioRTPSource::createNew(env(), fRTPSocket,  
  34.                         fRTPSource, fRTPPayloadFormat, 1 /*isWideband*/,  
  35.                         fNumChannels, fOctetalign, fInterleaving,  
  36.                         fRobustsorting, fCRC);  
  37.                 // Note that fReadSource will differ from fRTPSource in this case  
  38.             } else if (strcmp(fCodecName, "MPA") == 0) { // MPEG-1 or 2 audio  
  39.                 fReadSource = fRTPSource = MPEG1or2AudioRTPSource::createNew(  
  40.                         env(), fRTPSocket, fRTPPayloadFormat,  
  41.                         fRTPTimestampFrequency);  
  42.             } else if (strcmp(fCodecName, "MPA-ROBUST") == 0) { // robust MP3 audio  
  43.                 fRTPSource = MP3ADURTPSource::createNew(env(), fRTPSocket,  
  44.                         fRTPPayloadFormat, fRTPTimestampFrequency);  
  45.                 if (fRTPSource == NULL)  
  46.                     break;  
  47.   
  48.                 // Add a filter that deinterleaves the ADUs after depacketizing them:  
  49.                 MP3ADUdeinterleaver* deinterleaver = MP3ADUdeinterleaver::createNew(  
  50.                         env(), fRTPSource);  
  51.                 if (deinterleaver == NULL)  
  52.                     break;  
  53.   
  54.                 // Add another filter that converts these ADUs to MP3 frames:  
  55.                 fReadSource = MP3FromADUSource::createNew(env(), deinterleaver);  
  56.             } else if (strcmp(fCodecName, "X-MP3-DRAFT-00") == 0) {  
  57.                 // a non-standard variant of "MPA-ROBUST" used by RealNetworks  
  58.                 // (one 'ADU'ized MP3 frame per packet; no headers)  
  59.                 fRTPSource = SimpleRTPSource::createNew(env(), fRTPSocket,  
  60.                         fRTPPayloadFormat, fRTPTimestampFrequency,  
  61.                         "audio/MPA-ROBUST" /*hack*/);  
  62.                 if (fRTPSource == NULL)  
  63.                     break;  
  64.   
  65.                 // Add a filter that converts these ADUs to MP3 frames:  
  66.                 fReadSource = MP3FromADUSource::createNew(env(), fRTPSource,  
  67.                         False /*no ADU header*/);  
  68.             } else if (strcmp(fCodecName, "MP4A-LATM") == 0) { // MPEG-4 LATM audio  
  69.                 fReadSource = fRTPSource = MPEG4LATMAudioRTPSource::createNew(  
  70.                         env(), fRTPSocket, fRTPPayloadFormat,  
  71.                         fRTPTimestampFrequency);  
  72.             } else if (strcmp(fCodecName, "AC3") == 0  
  73.                     || strcmp(fCodecName, "EAC3") == 0) { // AC3 audio  
  74.                 fReadSource = fRTPSource = AC3AudioRTPSource::createNew(env(),  
  75.                         fRTPSocket, fRTPPayloadFormat, fRTPTimestampFrequency);  
  76.             } else if (strcmp(fCodecName, "MP4V-ES") == 0) { // MPEG-4 Elem Str vid  
  77.                 fReadSource = fRTPSource = MPEG4ESVideoRTPSource::createNew(  
  78.                         env(), fRTPSocket, fRTPPayloadFormat,  
  79.                         fRTPTimestampFrequency);  
  80.             } else if (strcmp(fCodecName, "MPEG4-GENERIC") == 0) {  
  81.                 fReadSource = fRTPSource = MPEG4GenericRTPSource::createNew(  
  82.                         env(), fRTPSocket, fRTPPayloadFormat,  
  83.                         fRTPTimestampFrequency, fMediumName, fMode, fSizelength,  
  84.                         fIndexlength, fIndexdeltalength);  
  85.             } else if (strcmp(fCodecName, "MPV") == 0) { // MPEG-1 or 2 video  
  86.                 fReadSource = fRTPSource = MPEG1or2VideoRTPSource::createNew(  
  87.                         env(), fRTPSocket, fRTPPayloadFormat,  
  88.                         fRTPTimestampFrequency);  
  89.             } else if (strcmp(fCodecName, "MP2T") == 0) { // MPEG-2 Transport Stream  
  90.                 fRTPSource = SimpleRTPSource::createNew(env(), fRTPSocket,  
  91.                         fRTPPayloadFormat, fRTPTimestampFrequency, "video/MP2T",  
  92.                         0, False);  
  93.                 fReadSource = MPEG2TransportStreamFramer::createNew(env(),  
  94.                         fRTPSource);  
  95.                 // this sets "durationInMicroseconds" correctly, based on the PCR values  
  96.             } else if (strcmp(fCodecName, "H261") == 0) { // H.261  
  97.                 fReadSource = fRTPSource = H261VideoRTPSource::createNew(env(),  
  98.                         fRTPSocket, fRTPPayloadFormat, fRTPTimestampFrequency);  
  99.             } else if (strcmp(fCodecName, "H263-1998") == 0  
  100.                     || strcmp(fCodecName, "H263-2000") == 0) { // H.263+  
  101.                 fReadSource = fRTPSource = H263plusVideoRTPSource::createNew(  
  102.                         env(), fRTPSocket, fRTPPayloadFormat,  
  103.                         fRTPTimestampFrequency);  
  104.             } else if (strcmp(fCodecName, "H264") == 0) {  
  105.                 fReadSource = fRTPSource = H264VideoRTPSource::createNew(env(),  
  106.                         fRTPSocket, fRTPPayloadFormat, fRTPTimestampFrequency);  
  107.             } else if (strcmp(fCodecName, "DV") == 0) {  
  108.                 fReadSource = fRTPSource = DVVideoRTPSource::createNew(env(),  
  109.                         fRTPSocket, fRTPPayloadFormat, fRTPTimestampFrequency);  
  110.             } else if (strcmp(fCodecName, "JPEG") == 0) { // motion JPEG  
  111.                 fReadSource = fRTPSource = JPEGVideoRTPSource::createNew(env(),  
  112.                         fRTPSocket, fRTPPayloadFormat, fRTPTimestampFrequency,  
  113.                         videoWidth(), videoHeight());  
  114.             } else if (strcmp(fCodecName, "X-QT") == 0  
  115.                     || strcmp(fCodecName, "X-QUICKTIME") == 0) {  
  116.                 // Generic QuickTime streams, as defined in  
  117.                 // <http://developer.apple.com/quicktime/icefloe/dispatch026.html>  
  118.                 char* mimeType = new char[strlen(mediumName())  
  119.                         + strlen(codecName()) + 2];  
  120.                 sprintf(mimeType, "%s/%s", mediumName(), codecName());  
  121.                 fReadSource = fRTPSource = QuickTimeGenericRTPSource::createNew(  
  122.                         env(), fRTPSocket, fRTPPayloadFormat,  
  123.                         fRTPTimestampFrequency, mimeType);  
  124.                 delete[] mimeType;  
  125.             } else if (strcmp(fCodecName, "PCMU") == 0 // PCM u-law audio  
  126.             || strcmp(fCodecName, "GSM") == 0 // GSM audio  
  127.             || strcmp(fCodecName, "DVI4") == 0 // DVI4 (IMA ADPCM) audio  
  128.             || strcmp(fCodecName, "PCMA") == 0 // PCM a-law audio  
  129.             || strcmp(fCodecName, "MP1S") == 0 // MPEG-1 System Stream  
  130.             || strcmp(fCodecName, "MP2P") == 0 // MPEG-2 Program Stream  
  131.             || strcmp(fCodecName, "L8") == 0 // 8-bit linear audio  
  132.             || strcmp(fCodecName, "L16") == 0 // 16-bit linear audio  
  133.             || strcmp(fCodecName, "L20") == 0 // 20-bit linear audio (RFC 3190)  
  134.             || strcmp(fCodecName, "L24") == 0 // 24-bit linear audio (RFC 3190)  
  135.             || strcmp(fCodecName, "G726-16") == 0 // G.726, 16 kbps  
  136.             || strcmp(fCodecName, "G726-24") == 0 // G.726, 24 kbps  
  137.             || strcmp(fCodecName, "G726-32") == 0 // G.726, 32 kbps  
  138.             || strcmp(fCodecName, "G726-40") == 0 // G.726, 40 kbps  
  139.             || strcmp(fCodecName, "SPEEX") == 0 // SPEEX audio  
  140.             || strcmp(fCodecName, "T140") == 0 // T.140 text (RFC 4103)  
  141.             || strcmp(fCodecName, "DAT12") == 0 // 12-bit nonlinear audio (RFC 3190)  
  142.                     ) {  
  143.                 createSimpleRTPSource = True;  
  144.                 useSpecialRTPoffset = 0;  
  145.             } else if (useSpecialRTPoffset >= 0) {  
  146.                 // We don't know this RTP payload format, but try to receive  
  147.                 // it using a 'SimpleRTPSource' with the specified header offset:  
  148.                 createSimpleRTPSource = True;  
  149.             } else {  
  150.                 env().setResultMsg(  
  151.                         "RTP payload format unknown or not supported");  
  152.                 break;  
  153.             }  
  154.   
  155.             if (createSimpleRTPSource) {  
  156.                 char* mimeType = new char[strlen(mediumName())  
  157.                         + strlen(codecName()) + 2];  
  158.                 sprintf(mimeType, "%s/%s", mediumName(), codecName());  
  159.                 fReadSource = fRTPSource = SimpleRTPSource::createNew(env(),  
  160.                         fRTPSocket, fRTPPayloadFormat, fRTPTimestampFrequency,  
  161.                         mimeType, (unsigned) useSpecialRTPoffset,  
  162.                         doNormalMBitRule);  
  163.                 delete[] mimeType;  
  164.             }  
  165.         }  
  166.   
  167.         return True;  
  168.     } while (0);  
  169.   
  170.     return False; // an error occurred  
  171. }  
可以看到,这个函数里主要是跟据前面分析出的媒体和传输信息建立合适的Source。

socket建立了,Source也创建了,下一步应该是连接Sink,形成一个流。到此为止还未看到Sink的影子,应该是在下一步SETUP中建立,我们看到在continueAfterDESCRIBE()的最后调用了setupStreams(),那么就来探索一下setupStreams():

[cpp]  view plain copy
  1. void setupStreams()  
  2. {  
  3.     static MediaSubsessionIterator* setupIter = NULL;  
  4.     if (setupIter == NULL)  
  5.         setupIter = new MediaSubsessionIterator(*session);  
  6.   
  7.     //每次调用此函数只为一个Subsession发出SETUP请求。  
  8.     while ((subsession = setupIter->next()) != NULL) {  
  9.         // We have another subsession left to set up:  
  10.         if (subsession->clientPortNum() == 0)  
  11.             continue// port # was not set  
  12.   
  13.         //为一个Subsession发送SETUP请求。请求处理完成时调用continueAfterSETUP(),  
  14.         //continueAfterSETUP()又调用了setupStreams(),在此函数中为下一个SubSession发送SETUP请求。  
[cpp]  view plain copy
  1. <span style="white-space:pre">      </span>//直到处理完所有的SubSession  
  2.         setupSubsession(subsession, streamUsingTCP, continueAfterSETUP);  
  3.         return;  
  4.     }  
  5.   
  6.     //执行到这里时,已循环完所有的SubSession了  
  7.     // We're done setting up subsessions.  
  8.     delete setupIter;  
  9.     if (!madeProgress)  
  10.         shutdown();  
  11.   
  12.     //创建输出文件,看来是在这里创建Sink了。创建sink后,就开始播放它。这个播放应该只是把socket的handler加入到  
  13.     //计划任务中,而没有数据的接收或发送。只有等到发出PLAY请求后才有数据的收发。  
  14.     // Create output files:  
  15.     if (createReceivers) {  
  16.         if (outputQuickTimeFile) {  
  17.             // Create a "QuickTimeFileSink", to write to 'stdout':  
  18.             qtOut = QuickTimeFileSink::createNew(*env, *session, "stdout",  
  19.                     fileSinkBufferSize, movieWidth, movieHeight, movieFPS,  
  20.                     packetLossCompensate, syncStreams, generateHintTracks,  
  21.                     generateMP4Format);  
  22.             if (qtOut == NULL) {  
  23.                 *env << "Failed to create QuickTime file sink for stdout: "  
  24.                         << env->getResultMsg();  
  25.                 shutdown();  
  26.             }  
  27.   
  28.             qtOut->startPlaying(sessionAfterPlaying, NULL);  
  29.         } else if (outputAVIFile) {  
  30.             // Create an "AVIFileSink", to write to 'stdout':  
  31.             aviOut = AVIFileSink::createNew(*env, *session, "stdout",  
  32.                     fileSinkBufferSize, movieWidth, movieHeight, movieFPS,  
  33.                     packetLossCompensate);  
  34.             if (aviOut == NULL) {  
  35.                 *env << "Failed to create AVI file sink for stdout: "  
  36.                         << env->getResultMsg();  
  37.                 shutdown();  
  38.             }  
  39.   
  40.             aviOut->startPlaying(sessionAfterPlaying, NULL);  
  41.         } else {  
  42.             // Create and start "FileSink"s for each subsession:  
  43.             madeProgress = False;  
  44.             MediaSubsessionIterator iter(*session);  
  45.             while ((subsession = iter.next()) != NULL) {  
  46.                 if (subsession->readSource() == NULL)  
  47.                     continue// was not initiated  
  48.   
  49.                 // Create an output file for each desired stream:  
  50.                 char outFileName[1000];  
  51.                 if (singleMedium == NULL) {  
  52.                     // Output file name is  
  53.                     //     "<filename-prefix><medium_name>-<codec_name>-<counter>"  
  54.                     static unsigned streamCounter = 0;  
  55.                     snprintf(outFileName, sizeof outFileName, "%s%s-%s-%d",  
  56.                             fileNamePrefix, subsession->mediumName(),  
  57.                             subsession->codecName(), ++streamCounter);  
  58.                 } else {  
  59.                     sprintf(outFileName, "stdout");  
  60.                 }  
  61.                 FileSink* fileSink;  
  62.                 if (strcmp(subsession->mediumName(), "audio") == 0  
  63.                         && (strcmp(subsession->codecName(), "AMR") == 0  
  64.                                 || strcmp(subsession->codecName(), "AMR-WB")  
  65.                                         == 0)) {  
  66.                     // For AMR audio streams, we use a special sink that inserts AMR frame hdrs:  
  67.                     fileSink = AMRAudioFileSink::createNew(*env, outFileName,  
  68.                             fileSinkBufferSize, oneFilePerFrame);  
  69.                 } else if (strcmp(subsession->mediumName(), "video") == 0  
  70.                         && (strcmp(subsession->codecName(), "H264") == 0)) {  
  71.                     // For H.264 video stream, we use a special sink that insert start_codes:  
  72.                     fileSink = H264VideoFileSink::createNew(*env, outFileName,  
  73.                             subsession->fmtp_spropparametersets(),  
  74.                             fileSinkBufferSize, oneFilePerFrame);  
  75.                 } else {  
  76.                     // Normal case:  
  77.                     fileSink = FileSink::createNew(*env, outFileName,  
  78.                             fileSinkBufferSize, oneFilePerFrame);  
  79.                 }  
  80.                 subsession->sink = fileSink;  
  81.                 if (subsession->sink == NULL) {  
  82.                     *env << "Failed to create FileSink for \"" << outFileName  
  83.                             << "\": " << env->getResultMsg() << "\n";  
  84.                 } else {  
  85.                     if (singleMedium == NULL) {  
  86.                         *env << "Created output file: \"" << outFileName  
  87.                                 << "\"\n";  
  88.                     } else {  
  89.                         *env << "Outputting data from the \""  
  90.                                 << subsession->mediumName() << "/"  
  91.                                 << subsession->codecName()  
  92.                                 << "\" subsession to 'stdout'\n";  
  93.                     }  
  94.   
  95.                     if (strcmp(subsession->mediumName(), "video") == 0  
  96.                             && strcmp(subsession->codecName(), "MP4V-ES") == 0 &&  
  97.                             subsession->fmtp_config() != NULL) {  
  98.                         // For MPEG-4 video RTP streams, the 'config' information  
  99.                         // from the SDP description contains useful VOL etc. headers.  
  100.                         // Insert this data at the front of the output file:  
  101.                         unsigned                    configLen;  
  102.                         unsigned char* configData  
  103.                         = parseGeneralConfigStr(subsession->fmtp_config(), configLen);  
  104.                         struct timeval timeNow;  
  105.                         gettimeofday(&timeNow, NULL);  
  106.                         fileSink->addData(configData, configLen, timeNow);  
  107.                         delete[] configData;  
  108.                     }  
  109.   
  110.                     //开始传输  
  111.                     subsession->sink->startPlaying(*(subsession->readSource()),  
  112.                             subsessionAfterPlaying, subsession);  
  113.   
  114.                     // Also set a handler to be called if a RTCP "BYE" arrives  
  115.                     // for this subsession:  
  116.                     if (subsession->rtcpInstance() != NULL) {  
  117.                         subsession->rtcpInstance()->setByeHandler(  
  118.                                 subsessionByeHandler, subsession);  
  119.                     }  
  120.   
  121.                     madeProgress = True;  
  122.                 }  
  123.             }  
  124.             if (!madeProgress)  
  125.                 shutdown();  
  126.         }  
  127.     }  
  128.   
  129.     // Finally, start playing each subsession, to start the data flow:  
  130.     if (duration == 0) {  
  131.         if (scale > 0)  
  132.             duration = session->playEndTime() - initialSeekTime; // use SDP end time  
  133.         else if (scale < 0)  
  134.             duration = initialSeekTime;  
  135.     }  
  136.     if (duration < 0)  
  137.         duration = 0.0;  
  138.   
  139.     endTime = initialSeekTime;  
  140.     if (scale > 0) {  
  141.         if (duration <= 0)  
  142.             endTime = -1.0f;  
  143.         else  
  144.             endTime = initialSeekTime + duration;  
  145.     } else {  
  146.         endTime = initialSeekTime - duration;  
  147.         if (endTime < 0)  
  148.             endTime = 0.0f;  
  149.     }  
  150.   
  151.     //发送PLAY请求,之后才能从Server端接收数据  
  152.     startPlayingSession(session, initialSeekTime, endTime, scale,  
  153.             continueAfterPLAY);  
  154. }  
仔细看看注释,应很容易了解此函数。

你可能感兴趣的:(live555学习笔记8-RTSPClient分析)