Time Limit: 5000MS | Memory Limit: 131072K | |
Total Submissions: 82238 | Accepted: 25451 | |
Case Time Limit: 2000MS |
Description
You have N integers, A1, A2, ... , AN. You need to deal with two kinds of operations. One type of operation is to add some given number to each number in a given interval. The other is to ask for the sum of numbers in a given interval.
Input
The first line contains two numbers N and Q. 1 ≤ N,Q ≤ 100000.
The second line contains N numbers, the initial values of A1, A2, ... , AN. -1000000000 ≤ Ai ≤ 1000000000.
Each of the next Q lines represents an operation.
"C a b c" means adding c to each of Aa, Aa+1, ... , Ab. -10000 ≤ c ≤ 10000.
"Q a b" means querying the sum of Aa, Aa+1, ... , Ab.
Output
You need to answer all Q commands in order. One answer in a line.
Sample Input
10 5 1 2 3 4 5 6 7 8 9 10 Q 4 4 Q 1 10 Q 2 4 C 3 6 3 Q 2 4
Sample Output
4 55 9 15
从网上找到了人家对lazy思想的解释,非常容易理解:比如现在需要对[a,b]区间值进行加c操作,那么就从根节点[1,n]开始调用update函数进行操作,如果刚好执行到一个子节点,它的节点标记为rt,这时tree[rt].l == a && tree[rt].r == b 这时我们可以一步更新此时rt节点的sum[rt]的值,sum[rt] += c * (tree[rt].r - tree[rt].l + 1),注意关键的时刻来了,如果此时按照常规的线段树的update操作,这时候还应该更新rt子节点的sum[]值,而Lazy思想恰恰是暂时不更新rt子节点的sum[]值,到此就return,直到下次需要用到rt子节点的值的时候才去更新,这样避免许多可能无用的操作,从而节省时间 。
代码如下:
#include<stdio.h> #include<string.h> struct stu { int l,r; int mid() { return (l+r)>>1; } }; stu node[1000000]; __int64 sum[1000000]; __int64 add[1000000]; void PUTDOWN(int rt,int m) { if(add[rt]) { add[rt<<1]+=add[rt]; add[rt<<1|1]+=add[rt]; sum[rt<<1]+=add[rt]*(m-(m>>1));//算数运算符的优先级大于位运算符 ,竟然在这里错了. sum[rt<<1|1]+=add[rt]*(m>>1); add[rt]=0; } } void PUTUP(int rt) { sum[rt]=sum[rt<<1]+sum[rt<<1|1]; } void build(int rt,int l,int r) { node[rt].l=l; node[rt].r=r; add[rt]=0; if(l==r) { scanf("%I64d",&sum[rt]); return; } int m=node[rt].mid(); build(rt<<1,l,m); build(rt<<1|1,m+1,r);//2的倍数的二进制最后一位都为0 PUTUP(rt);//一开始每个结点的和 } void updata(int rt,int l,int r,int v) { if(node[rt].l==l&&node[rt].r==r) { add[rt]+=v; sum[rt]+=(__int64)v*(r-l+1); return; } PUTDOWN(rt,node[rt].r-node[rt].l+1); int m=node[rt].mid(); if(r<=m)updata(rt<<1,l,r,v); else { if(l>m)updata(rt<<1|1,l,r,v); else { updata(rt<<1,l,m,v); updata(rt<<1|1,m+1,r,v); } } PUTUP(rt); } __int64 query(int rt ,int l,int r) { if(node[rt].l==l&&node[rt].r==r) return sum[rt]; PUTDOWN(rt,node[rt].r-node[rt].l+1); int m=node[rt].mid() ; if(r<=m) return query(rt<<1,l,r); else { if(l>m)return query(rt<<1|1,l,r); else return query(rt<<1,l,m)+query(rt<<1|1,m+1,r); } } int main() { int n,m,a,b,v; char c; while(scanf("%d%d",&n,&m)!=EOF) { build(1,1,n); while(m--) { getchar(); scanf("%c%d%d",&c,&a,&b); if(c=='Q') { printf("%I64d\n",query(1,a,b)); } else if(c=='C') { scanf("%d",&v); updata(1,a,b,v); } } } return 0; }