最短路径算法—Dijkstra(迪杰斯特拉)算法分析与实现(C/C++)

原文地址http://www.wutianqi.com/?p=1890

Dijkstra(迪杰斯特拉)算法是典型的最短路径路由算法,用于计算一个节点到其他所有节点的最短路径。主要特点是以起始点为中心向外层层扩展,直到扩展到终点为止。Dijkstra算法能得出最短路径的最优解,但由于它遍历计算的节点很多,所以效率低。

  Dijkstra算法是很有代表性的最短路算法,在很多专业课程中都作为基本内容有详细的介绍,如数据结构,图论,运筹学等等。

其基本思想是,设置顶点集合S并不断地作贪心选择来扩充这个集合。一个顶点属于集合S当且仅当从源到该顶点的最短路径长度已知。

初始时,S中仅含有源。设u是G的某一个顶点,把从源到u且中间只经过S中顶点的路称为从源到u的特殊路径,并用数组dist记录当前每个顶点所对应的最短特殊路径长度。Dijkstra算法每次从V-S中取出具有最短特殊路长度的顶点u,将u添加到S中,同时对数组dist作必要的修改。一旦S包含了所有V中顶点,dist就记录了从源到所有其它顶点之间的最短路径长度。

例如,对下图中的有向图,应用Dijkstra算法计算从源顶点1到其它顶点间最短路径的过程列在下表中。

最短路径算法—Dijkstra(迪杰斯特拉)算法分析与实现(C/C++)_第1张图片

 

Dijkstra算法的迭代过程:

最短路径算法—Dijkstra(迪杰斯特拉)算法分析与实现(C/C++)_第2张图片

主题好好理解上图!

以下是具体的实现(C/C++):

/***************************************
* About:    有向图的Dijkstra算法实现
* Author:   Tanky Woo
* Blog:     www.WuTianQi.com
***************************************/

#include <iostream>
using namespace std;

const int maxnum = 100;
const int maxint = 999999;

// 各数组都从下标1开始
//int dist[maxnum];     // 表示当前点到源点的最短路径长度
//int prev[maxnum];     // 记录当前点的前一个结点
//int c[maxnum][maxnum];   // 记录图的两点间路径长度
//int n, line;             // 图的结点数和路径数

// n -- n nodes
// v -- the source node
// dist[] -- the distance from the ith node to the source node
// prev[] -- the previous node of the ith node
// c[][] -- every two nodes' distance
void Dijkstra(int n, int v, int *dist, int *prev, int c[maxnum][maxnum])
{
	bool s[maxnum];    // 判断是否已存入该点到S集合中
	for(int i=1; i<=n; ++i)
	{
		dist[i] = c[v][i];
		s[i] = 0;     // 初始都未用过该点
		if(dist[i] == maxint)
			prev[i] = 0;
		else
			prev[i] = v;
	}
	dist[v] = 0;
	s[v] = 1;

	// 依次将未放入S集合的结点中,取dist[]最小值的结点,放入结合S中
	// 一旦S包含了所有V中顶点,dist就记录了从源点到所有其他顶点之间的最短路径长度
	// 注意是从第二个节点开始,第一个为源点
	for(int i=2; i<=n; ++i)
	{
		int tmp = maxint;
		int u = v;
		// 找出当前未使用的点j的dist[j]最小值
		for(int j=1; j<=n; ++j)
			if((!s[j]) && dist[j]<tmp)
			{
				u = j;              // u保存当前邻接点中距离最小的点的号码
				tmp = dist[j];
			}
			s[u] = 1;    // 表示u点已存入S集合中

			// 更新dist
			for(int j=1; j<=n; ++j)
				if((!s[j]) && c[u][j]<maxint)
				{
					int newdist = dist[u] + c[u][j];
					if(newdist < dist[j])
					{
						dist[j] = newdist;
						prev[j] = u;
					}
				}
	}
}

// 查找从源点v到终点u的路径,并输出
void searchPath(int *prev,int v, int u)
{
	int que[maxnum];
	int tot = 1;
	que[tot] = u;
	tot++;
	int tmp = prev[u];
	while(tmp != v)
	{
		que[tot] = tmp;
		tot++;
		tmp = prev[tmp];
	}
	que[tot] = v;
	for(int i=tot; i>=1; --i)
		if(i != 1)
			cout << que[i] << " -> ";
		else
			cout << que[i] << endl;
}

int main()
{
	int dist[maxnum];     // 表示当前点到源点的最短路径长度
	int prev[maxnum];     // 记录当前点的前一个结点
	int c[maxnum][maxnum];   // 记录图的两点间路径长度
	int n, line;             // 图的结点数和路径数
	freopen("input.txt", "r", stdin);
	// 各数组都从下标1开始

	// 输入结点数
	cin >> n;
	// 输入路径数
	cin >> line;
	int p, q, len;          // 输入p, q两点及其路径长度

	// 初始化c[][]为maxint
	for(int i=1; i<=n; ++i)
		for(int j=1; j<=n; ++j)
			c[i][j] = maxint;

	for(int i=1; i<=line; ++i)  
	{
		cin >> p >> q >> len;
		if(len < c[p][q])       // 有重边
		{
			c[p][q] = len;      // p指向q
			c[q][p] = len;      // q指向p,这样表示无向图
		}
	}

	for(int i=1; i<=n; ++i)
		dist[i] = maxint;
	for(int i=1; i<=n; ++i)
	{
		for(int j=1; j<=n; ++j)
			printf("%8d", c[i][j]);
		printf("\n");
	}

	Dijkstra(n, 1, dist, prev, c);

	// 最短路径长度
	cout << "源点到最后一个顶点的最短路径长度: " << dist[n] << endl;

	// 路径
	cout << "源点到最后一个顶点的路径为: ";
	searchPath(prev, 1, n);
}

input.txt当前目录下 内容存的是输入的数据 如果自己输入则把改行注释掉
输入数据:
5
7
1 2 10
1 4 30
1 5 100
2 3 50
3 5 10
4 3 20
4 5 60
输出数据:
999999 10 999999 30 100
10 999999 50 999999 999999
999999 50 999999 20 10
30 999999 20 999999 60
100 999999 10 60 999999
源点到最后一个顶点的最短路径长度: 60
源点到最后一个顶点的路径为: 1 -> 4 -> 3 -> 5

最后给出两道题目练手,都是直接套用模版就OK的:
1.HDOJ 1874 畅通工程续
http://www.wutianqi.com/?p=1894

2.HDOJ 2544 最短路
http://www.wutianqi.com/?p=1892

关于Dijkstra算法求多条等值路径的算法:

#include <iostream>
#include <vector>
#include <stack>
using namespace std;
 
const int maxnum = 100;
const int maxint = 999999;
 
// 各数组都从下标1开始
int dist[maxnum];     // 表示当前点到源点的最短路径长度

int c[maxnum][maxnum];   // 记录图的两点间路径长度
int n, line;             // 图的结点数和路径数
 
// n -- n nodes
// v -- the source node
// dist[] -- the distance from the ith node to the source node
// prev[] -- the previous node of the ith node
// c[][] -- every two nodes' distance
void Dijkstra(int n, int v, int *dist, vector<int> *prev, int c[maxnum][maxnum])
{
	bool s[maxnum];    // 判断是否已存入该点到S集合中
	for(int i=1; i<=n; ++i)
	{
		dist[i] = c[v][i];
		s[i] = 0;     // 初始都未用过该点
		if(dist[i] < maxint)
			prev[i].push_back(v);
	}
	dist[v] = 0;
	s[v] = 1;
 
	// 依次将未放入S集合的结点中,取dist[]最小值的结点,放入结合S中
	// 一旦S包含了所有V中顶点,dist就记录了从源点到所有其他顶点之间的最短路径长度
         // 注意是从第二个节点开始,第一个为源点
	for(int i=2; i<=n; ++i)
	{
		int tmp = maxint;
		int u = v;
		// 找出当前未使用的点j的dist[j]最小值
		for(int j=1; j<=n; ++j)
			if((!s[j]) && dist[j]<tmp)
			{
				u = j;              // u保存当前邻接点中距离最小的点的号码
				tmp = dist[j];
			}
		s[u] = 1;    // 表示u点已存入S集合中
 
		// 更新dist
		for(int j=1; j<=n; ++j)
			if((!s[j]) && c[u][j]<maxint)
			{
				int newdist = dist[u] + c[u][j];
				if(newdist <= dist[j])
				{
					if (newdist < dist[j]) {
					  prev[j].clear();
					  dist[j] = newdist;
					}
					prev[j].push_back(u);
				}
			}
	}
}
 
// 查找从源点v到终点u的路径,并输出
void searchPath(vector<int> *prev, int v, int u, int sta[], int len) {
	if (u == v) {
		cout<<v;
	    return ;
	}
	sta[len] = u;
	for (int i = 0 ; i < prev[u].size(); ++i ) {
		if (i > 0) {
			for (int j = len - 1  ; j >= 0 ; --j) {
				cout << " -> " << sta[j];
			}
			cout<<endl;
		}
		searchPath(prev, v, prev[u][i], sta, len + 1);
		cout << " -> " << u;
	}
}
 
int main() {
	//freopen("input.txt", "r", stdin);
	// 各数组都从下标1开始
    vector<int> prev[maxnum];     // 记录当前点的前一个结点
	// 输入结点数
	cin >> n;
	// 输入路径数
	cin >> line;
	int p, q, len;          // 输入p, q两点及其路径长度
 	for(int i=1; i<=n; ++i)
		for(int j=1; j<=n; ++j)
			c[i][j] = maxint;
 
	for(int i=1; i<=line; ++i)  
	{
		cin >> p >> q >> len;
		if(len < c[p][q])       // 有重边
		{
			c[p][q] = len;      // p指向q
			c[q][p] = len;      // q指向p,这样表示无向图
		}
	}
 
	for(int i=1; i<=n; ++i)
		dist[i] = maxint;
	for(int i=1; i<=n; ++i)
	{
		for(int j=1; j<=n; ++j)
			printf("%8d", c[i][j]);
		printf("\n");
	}
 
	Dijkstra(n, 1, dist, prev, c);
 
	cout << "源点到最后一个顶点的最短路径长度: " << dist[n] << endl;
 	cout << "源点到最后一个顶点的路径为: "<<endl;
	int sta[maxnum];
	searchPath(prev, 1, n, sta, 0);
}

/*

5 8
1 2 10
1 4 20
1 5 100
2 3 10
3 5 10
4 3 10
4 5 10
2 5 20
  999999      10  999999      20     100
      10  999999      10  999999      20
  999999      10  999999      10      10
      20  999999      10  999999      10
     100      20      10      10  999999
源点到最后一个顶点的最短路径长度: 30
源点到最后一个顶点的路径为:
1 -> 2 -> 5
1 -> 2 -> 3 -> 5
1 -> 4 -> 5请按任意键继续. . .
*/

原文地址:http://bbs.csdn.net/topics/390446273

 

你可能感兴趣的:(最短路径算法—Dijkstra(迪杰斯特拉)算法分析与实现(C/C++))