【LCA】 Codeforces Round #294 (Div. 2) E. A and B and Lecture Rooms

题意:给定一颗树,点10^5,询问10^5,每次询问给出两个点,求树上有多少点到这两个点的距离相同。

解法:建立倍增LCA,然后每次询问考虑如下,1)u==v,显然答案是n2)uv的距离为奇数(可通过LCA求出),显然案

03)uv的深度相同,那么答案就是n-lca偏向u的子树大小-lca偏向v的子树大小。4)uv的深度不同,设v的深度大,

答案就是lca的子树大小-lca偏向v的子树大小。


#include <iostream>
#include <queue> 
#include <stack> 
#include <map> 
#include <set> 
#include <bitset> 
#include <cstdio> 
#include <algorithm> 
#include <cstring> 
#include <climits>
#include <cstdlib>
#include <cmath>
#include <time.h>
#define maxn 100005
#define maxm 200005
#define eps 1e-7i
#define mod 1000000007
#define INF 0x3f3f3f3f
#define PI (acos(-1.0))
#define lowbit(x) (x&(-x))
#define mp make_pair
#define ls o<<1
#define rs o<<1 | 1
#define lson o<<1, L, mid 
#define rson o<<1 | 1, mid+1, R
#define pii pair<int, int>
#pragma comment(linker, "/STACK:16777216")
typedef long long LL;
typedef unsigned long long ULL;
//typedef int LL;
using namespace std;
LL qpow(LL a, LL b){LL res=1,base=a;while(b){if(b%2)res=res*base;base=base*base;b/=2;}return res;}
LL powmod(LL a, LL b){LL res=1,base=a;while(b){if(b%2)res=res*base%mod;base=base*base%mod;b/=2;}return res;}
// head

struct Edge
{
	int v;
	Edge *next;
}*H[maxn], *edges, E[maxm];

int anc[maxn][20];
int size[maxn];
int dep[maxn];
int n, m;
const int M = 20;

void init()
{
	edges = E;
	memset(H, 0, sizeof H);
}

void addedges(int u, int v)
{
	edges->v = v;
	edges->next = H[u];
	H[u] = edges++;
}

void read()
{
	int u, v;
	scanf("%d", &n);
	for(int i = 1; i < n; i++) {
		scanf("%d%d", &u, &v);
		addedges(u, v);
		addedges(v, u);
	}
	scanf("%d", &m);
}

void dfs(int u, int fa)
{
	size[u] = 1, anc[u][0] = fa;
	for(Edge *e = H[u]; e; e = e->next) {
		int v = e->v;
		if(v == fa) continue;
		dep[v] = dep[u] + 1;
		dfs(v, u);
		size[u] += size[v];
	}
}

int to(int u, int d)
{
	for(int i = M - 1; i >= 0; i--) if(dep[anc[u][i]] >= d) u = anc[u][i];
	return u;
}

int lca(int u, int v)
{
	if(dep[u] < dep[v]) swap(u, v);
	u = to(u, dep[v]);
	for(int i = M - 1; i >= 0; i--) if(anc[u][i] != anc[v][i]) u = anc[u][i], v = anc[v][i];
	return u == v ? u : anc[u][0];
}

void work()
{
	int u, v;
	dep[1] = 0;
	dfs(1, 1);
	for(int i = 1; i < M; i++)
		for(int j = 1; j <= n; j++)
			anc[j][i] = anc[anc[j][i-1]][i-1];
	while(m--) {
		scanf("%d%d", &u, &v);
		int f = lca(u, v);
		int dist = dep[u] + dep[v] - 2 * dep[f];
		if(u == v) printf("%d\n", n);
		else if(dist % 2) printf("0\n");
		else if(dep[u] == dep[v]) {
			int t1 = to(u, dep[u] - dist / 2 + 1);
			int t2 = to(v, dep[v] - dist / 2 + 1);
			printf("%d\n", n - size[t1] - size[t2]);
		} else {
			if(dep[u] > dep[v]) swap(u, v);
			int t1 = to(v, dep[v] - dist / 2);
			int t2 = to(v, dep[v] - dist / 2 + 1);
			printf("%d\n", size[t1] - size[t2]);
		}
	}
}

int main()
{
	init();
	read();
	work();
	
	return 0;
}


你可能感兴趣的:(codeforces,LCA)