- CUDA编程基础
清 澜
算法面试人工智能c++算法nvidiacuda编程
一、快速理解CUDA编程1.1CUDA简介CUDA(ComputeUnifiedDeviceArchitecture)是由NVIDIA推出的并行计算平台和应用程序接口模型。它允许开发者利用NVIDIAGPU的强大计算能力来加速通用计算任务,而不仅仅是图形渲染。通过CUDA,开发者可以编写C、C++或Fortran代码,并将其扩展以在GPU上运行,从而显著提高性能,特别是在处理大规模数据集和复杂算法
- 纳米尺度仿真软件:Quantum Espresso_(21).并行计算与性能优化
kkchenjj
分子动力学2性能优化模拟仿真分子动力学仿真模拟
并行计算与性能优化在纳米尺度仿真中,计算资源的需求往往非常庞大。为了提高计算效率和缩短计算时间,并行计算和性能优化成为不可或缺的技术手段。QuantumEspresso作为一个开源的量子力学仿真软件,提供了多种并行计算的机制和性能优化的方法。本节将详细介绍如何在QuantumEspresso中实现并行计算和性能优化,以提升仿真任务的效率。并行计算的基本概念并行计算是指同时使用多个计算资源(如多核处
- 芯片:CPU和GPU有什么区别?
InnoLink_1024
AGI人工智能人工智能aiagigpu算力
CPU(中央处理器)和GPU(图形处理单元)是计算机系统中两种非常重要的处理器,它们各自有不同的设计理念、架构特点以及应用领域。下面是它们之间的一些主要差异:1.设计目的与应用领域CPU:设计目的是为了处理广泛的计算任务,包括操作系统管理、应用程序运行和基本的输入输出处理等。它处理的是复杂的、通用的计算任务,通常包括控制逻辑、内存管理等。GPU:设计目的是为了处理图形和并行计算任务。最初是为图形渲
- AI人工智能深度学习算法:在量子计算中的应用
AI天才研究院
AI大模型企业级应用开发实战AI大模型应用入门实战与进阶DeepSeekR1&大数据AI人工智能大模型计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
1.背景介绍随着科技的不断发展,人工智能和量子计算成为了当今世界的热门话题。人工智能的深度学习算法在处理大规模数据和复杂任务方面取得了显著的成果,而量子计算则具有强大的并行计算能力和高效的信息处理能力。将人工智能与量子计算相结合,为解决一些具有挑战性的问题提供了新的思路和方法。本文将探讨人工智能深度学习算法在量子计算中的应用,包括其背景、意义和应用场景。2.核心概念与联系在人工智能中,深度学习是一
- 基于MapReduce的气候数据分析
赵谨言
论文毕业设计经验分享
标题:基于MapReduce的气候数据分析内容:1.摘要本文聚焦于基于MapReduce的气候数据分析。背景在于随着全球气候变化问题日益严峻,海量气候数据的高效处理和分析成为关键。目的是利用MapReduce技术对气候数据进行有效挖掘,以揭示气候变化规律和趋势。方法上,采用MapReduce编程模型对大规模气候数据进行分布式处理,通过数据的映射和归约操作实现并行计算。结果表明,运用该技术能显著提高
- Matlab GPU加速技术
算法工程师y
matlab开发语言
1.GPU加速简介(1)为什么使用GPU加速?CPU擅长处理逻辑复杂的串行任务,而GPU拥有数千个流处理器,专为并行计算设计。对于大规模矩阵运算、深度学习训练或科学计算等任务,GPU加速可将计算速度提升数十至数百倍。(2)Matlab的GPU支持功能依赖:需安装ParallelComputingToolbox(并行计算工具箱)。硬件要求:支持CUDA的NVIDIAGPU(如Tesla、GeForc
- 从图形处理到通用计算的进化之路
绿算技术
GPU架构介绍科技gpu算力
图形处理单元,作为现代计算机中不可或缺的一部分,已经从最初的图形渲染专用处理器,发展成为强大的并行计算引擎,广泛应用于人工智能、科学计算、游戏娱乐等领域。本文将深入探讨GPU架构的演变历程、核心组件以及其在不同应用场景中的优势。GPU架构的演变:从固定功能到可编程流水线早期的GPU采用固定功能流水线架构,专为图形渲染任务而设计。这种架构将图形渲染流程划分为一系列固定的阶段,例如顶点处理、光栅化、纹
- GPU的优势:并行计算的利器
绿算技术
GPU架构介绍科技gpu算力
GPU相较于CPU,在并行计算方面具有以下优势:强大的并行计算能力:GPU拥有成千上万个计算核心,能够同时执行大量的线程,非常适合处理数据并行性高的任务。高内存带宽:GPU配备了高带宽的内存子系统,能够快速地将数据传输到计算核心,满足大规模数据处理的需求。高效的线程调度:GPU采用硬件多线程技术,能够快速地切换线程上下文,最大限度地提高计算资源的利用率。灵活的编程模型:GPU提供了丰富的编程模型和
- 在MATLAB中进行并行计算和GPU加速?
琛哥的程序
网络服务器人工智能
在MATLAB中进行并行计算和GPU加速是提升计算性能和处理大规模数据集的重要手段。下面将详细介绍如何在MATLAB中实现这些技术。一、并行计算MATLAB提供了并行计算的功能,可以充分利用多核处理器和分布式计算资源,显著提高代码执行效率。在MATLAB中进行并行计算的主要工具有ParallelComputingToolbox和parfor循环。ParallelComputingToolboxPa
- 深入理解 GPU 渲染加速与合成层(Composite Layers)
一、前端视角下的GPU加速1.CPU与GPU的协作模式在前端渲染流程中,GPU加速通过硬件并行计算能力显著提升图形处理效率。传统浏览器渲染依赖CPU处理DOM解析、样式计算和布局,但CPU的串行处理模式在处理大规模图形数据(如复杂动画、3D变换、高清图像)时易成为性能瓶颈。GPU的介入解决了这一核心矛盾:流处理器核心并行计算:GPU拥有数千个小型核心,可同时处理大量像素数据,例如同时对元素的所有像
- 信息技术基础专有名词和计算机硬件学习笔记
learning-striving
信息技术学习笔记信息技术计算机硬件
信息技术常见专有名词信息技术基础课程中常见的专有名词英文缩写或简称及其详细含义,按领域分类整理:硬件与存储CPU(CentralProcessingUnit)中央处理器,负责执行计算机指令和处理数据。GPU(GraphicsProcessingUnit)图形处理器,专用于处理图形和并行计算。RAM(RandomAccessMemory)随机存取存储器,临时存储运行中的程序和数据。ROM(Read-
- 一文讲清楚CUDA与PyTorch、GPU之间的关系
平凡而伟大.
编程语言人工智能架构设计pytorch人工智能python
CUDA(ComputeUnifiedDeviceArchitecture)是由NVIDIA开发的一个并行计算平台和编程模型。它允许软件开发人员和研究人员利用NVIDIA的GPU(图形处理单元)进行高性能计算。CUDA提供了一系列API和工具,使得开发者能够编写和优化在GPU上运行的计算密集型任务。CUDA与PyTorch、GPU之间的关系可以这样理解:1.CUDA与GPU:GPU:是一种专门用于
- 分子动力学仿真软件:ESPResSo_(14).优化与性能提升
kkchenjj
分子动力学2模拟仿真仿真模拟分子动力学
优化与性能提升在分子动力学仿真中,性能优化是一个至关重要的环节。高效的仿真可以显著减少计算时间,提高研究效率。本节将详细介绍如何在ESPResSo中进行性能优化,包括并行计算、算法优化、内存管理等方面的内容。并行计算并行计算是提高分子动力学仿真性能的有效手段。ESPResSo支持多种并行计算模式,包括多线程(OpenMP)和分布式计算(MPI)。合理利用这些并行计算模式可以显著提升仿真速度。Ope
- 使用Python的 multiprocessing 模块实现多进程并行计算(上完整代码)
小码小李
开发语言python数据库
使用Python的multiprocessing模块实现多进程并行计算的较为详细复杂的示例代码,用于计算一个较大范围内数字的平方,并将结果汇总。以下是一个更具体、复杂且详尽的多进程并行计算代码示例,用于分析多个大型文本文件中单词出现的频率:importmultiprocessingimporttimeimportrefromcollectionsimportCounter#函数用于读取单个文件内容
- 【Python】multiprocessing 模块:多进程并行计算
彬彬侠
Python基础multiprocessing多进程ProcessPoolManagerLockpython
Pythonmultiprocessing模块Python的multiprocessing模块用于多进程并行计算,可以充分利用多核CPU进行任务加速,突破PythonGIL(全局解释器锁)的限制,提高程序执行效率。1.为什么使用multiprocessing?Python默认的threading模块使用线程进行并发,但由于GIL(全局解释器锁)的存在,多线程无法真正实现CPU级别的并行计算,适用于
- 英伟达的ptx是什么?ptx在接近汇编语言的层级运行?
AI-AIGC-7744423
人工智能
PTX(ParallelThreadeXecution)是英伟达CUDA架构中的一种中间表示形式(IR)语言。以下是关于它的介绍以及它与汇编语言层级关系的说明:PTX介绍•性质与作用:PTX是一种类似于汇编语言的指令集架构,但它更像是一种抽象的、面向并行计算的中间语言。它是CUDA编程模型中,主机代码与实际在GPU上执行的机器码之间的桥梁。开发者编写的CUDAC/C++等高级语言代码,在编译过程中
- 问deepseek: openfoam并行分区,数据交换逻辑解释
weixin_42849849
CFD/OpenFOAM数值计算/数值优化DeepSeek
在OpenFOAM中,并行计算通过将计算域分解为多个子域来实现,每个子域由一个独立的进程处理。并行分区和数据交换是确保计算正确性和效率的关键部分。以下是并行分区和数据交换逻辑的详细解释:1.并行分区并行分区是将计算域分解为多个子域的过程,每个子域由一个独立的MPI进程处理。OpenFOAM提供了多种分区工具,如decomposePar,支持以下分区方法:简单分区:将域均匀划分为若干块。层次分区:递
- WebGPU 为什么会取代 WebGL,看看 WebGPU 都做了啥?
贝格前端工场
webglUI设计大数据
WebGPU被普遍认为是WebGL的继任者,并有望在未来逐步取代WebGL,这一趋势主要由以下技术、生态和行业因素推动,本文带着大家看WebGPU针对WebGL提升了啥,改进了啥。1.技术层面的必然性(1)硬件能力的演进需求现代GPU功能支持:WebGL基于OpenGLES(设计于2000年代初),无法利用现代GPU的并行计算、光线追踪、网格着色器等高级功能。WebGPU直接对接Vulkan/Me
- Java多线程与并行计算:深入剖析Java线程,线程池,以及利用Java进行并行计算的策略
哎 你看
Javajava开发语言线程并行并发
一、Java线程概述线程基础概念:线程是操作系统调度的最小单元,它是进程的一部分,每个线程都有自己的程序计数器、栈和局部变量。线程之间共享进程的堆和方法区。Java线程创建和启动:在Java中主要有两种方式创建线程:继承Thread类:创建一个新class,继承自Thread类,然后重写run()方法,并在该方法中执行需要在该线程中运行的代码。最后创建该class的实例,并调用其start()方法
- 分子动力学仿真软件:GROMACS_(1).GROMACS基础知识
kkchenjj
分子动力学2仿真模拟模拟仿真分子动力学
GROMACS基础知识1.GROMACS简介GROMACS(GROningenMAchineforChemicalSimulations)是一款广泛用于分子动力学仿真的开源软件。它主要用于模拟蛋白质、脂质、核酸以及其他生物分子系统的动力学行为。GROMACS以其高效、灵活和强大的功能而闻名,支持大规模并行计算,适用于从小分子到复杂生物体系的多种应用场景。1.1GROMACS的历史和发展GROMAC
- MATLAB 脑电数据处理代码优化:从基础到并行计算的演变
自由的晚风
matlab算法人工智能脑机接口经验分享笔记SSVEP
文章目录前言版本1:基础的串行处理版本2:引入并行计算提高效率版本3:进一步优化的并行化处理总结前言在处理EEG(脑电图)数据时,我们常常需要对大量信号进行滤波、降噪等操作。随着数据规模的不断增大,传统的串行处理方法往往变得效率低下。为了提高计算速度,我们可以通过引入并行计算来大幅度提升处理效率。本文将通过三个版本的MATLAB代码演示如何优化EEG数据处理流程,从基础的串行处理到并行计算,再到进
- mySQL和Hive的区别
iijik55
面试学习路线阿里巴巴hivemysql大数据tomcat面试
SQL和HQL的区别整体1、存储位置:Hive在Hadoop上;Mysql将数据存储在设备或本地系统中;2、数据更新:Hive不支持数据的改写和添加,是在加载的时候就已经确定好了;数据库可以CRUD;3、索引:Hive无索引,每次扫描所有数据,底层是MR,并行计算,适用于大数据量;MySQL有索引,适合在线查询数据;4、执行:Hive底层是MapReduce;MySQL底层是执行引擎;5、可扩展性
- (7)学习编程---python多进程、多线程、协程
daydreamer5920
编程学习
多进程(Multiprocessing)概念多进程是指一个程序同时运行多个进程。每个进程都有自己的内存空间和资源,进程之间通过进程间通信(IPC)来共享数据。优点独立性:每个进程都有独立的内存空间,一个进程的崩溃不会影响其他进程。并行性:可以利用多核CPU的优势,实现真正的并行计算。缺点资源消耗:每个进程都有自己的内存空间,因此资源消耗较大。通信成本:进程间通信需要通过IPC,通信成本较高。多线程
- A800算力部署实战策略
智能计算研究中心
其他
内容概要《A800算力部署实战策略》聚焦于高性能计算集群的全生命周期管理,系统梳理从底层硬件选型到上层软件生态协同的关键技术路径。本书以A800芯片的并行计算特性为切入点,深入探讨算力密度与能效比之间的动态平衡机制,覆盖硬件拓扑优化、分布式任务调度、跨架构编译优化等核心环节。通过模块化设计思路,将复杂的部署流程拆解为可迭代实施的标准化操作单元,为不同规模的计算场景提供灵活适配方案。建议在规划初期建
- matlab spmd,matlab并行计算命令
其实我是老莫
matlabspmd
1.matlab仿真模型怎么并行计算以单台双核计算机为例。首先打开MATLAB命令窗口,输入matlabpoolopen就OK了。这样,就相当于将一台计算机的两个核心,当做两台机器用啦。接下来是编程序实现的方法。MATLAB并行计算的模式有几种?主要是两种:parfor模式和spmd模式。两种模式的应用都很简单。第一个中,parfor其实就是parallel+for简化而来,顾名思义啊,就是把原来
- 本地部署AI大模型之并行计算:什么是可重入互斥锁/递归锁
杰瑞学AI
DevopsComputerknowledge开发语言python软件工程性能优化
目录1.普通互斥锁的局限性2.可重入互斥锁的工作原理3.使用场景4.代码示例5.实现关键6.注意事项可重入互斥锁(ReentrantMutex,或称为递归锁)是一种特殊类型的互斥锁,允许同一线程多次获取同一把锁而不会导致死锁。以下是其核心要点:1.普通互斥锁的局限性普通互斥锁(Mutex)在同一个线程中只能被获取一次。若线程尝试重复获取已持有的锁,会导致自死锁(线程无限等待自己释放锁)。2.可重入
- 《深度解析DeepSeek-M8:量子经典融合,重塑计算能效格局》
程序猿阿伟
量子计算
在科技飞速发展的今天,量子计算与经典算法的融合成为了前沿领域的焦点。DeepSeek-M8的“量子神经网络混合架构”,宛如一把钥匙,开启了经典算法与量子计算协同推理的全新大门,为诸多复杂问题的解决提供了前所未有的思路。量子计算,基于量子力学的奇妙特性,如量子比特的叠加与纠缠,展现出了超越经典计算的潜力。量子比特能够同时处于多个状态,实现并行计算,这使得量子计算机在处理某些特定问题时,具备指数级加速
- Unity Job系统详解原理和基础应用处理大量物体位置
废嘉在线抓狂.
Unity
概述该脚本使用UnityJobSystem和BurstCompiler高效管理大量剑对象的位移计算与坐标更新。通过双缓冲技术实现无锁并行计算,适用于需要高性能批量处理Transform的场景。核心类SwordManager成员变量变量名类型说明swordPrefabGameObject剑对象预制体_deltaPositionsNativeArray每帧位移增量数据(临时内存分配)_position
- 分子动力学仿真软件:GROMACS_(12).并行计算与性能优化
kkchenjj
分子动力学2分子动力学仿真模拟模拟仿真性能优化
并行计算与性能优化并行计算的基本概念并行计算是指同时使用多个计算资源(如处理器、计算节点等)来执行计算任务,以提高计算效率和速度。在分子动力学仿真中,系统的规模往往非常大,涉及数百万甚至数十亿个原子的相互作用。因此,并行计算是提高仿真效率的关键技术之一。并行计算的类型并行计算主要分为以下几种类型:数据并行:将数据分割成多个部分,每部分由不同的计算资源处理。任务并行:将任务分解成多个子任务,每个子任
- 【Transformer优化】Transformer的局限在哪?
T-I-M
transformer深度学习人工智能
自2017年Transformer横空出世以来,它几乎重写了自然语言处理的规则。但当我们在享受其惊人的并行计算能力和表征能力时,是否真正理解了它的局限性?本文将深入探讨在复杂度之外被忽视的五大核心缺陷,并试图在数学维度揭示其本质。一、全局注意力的"诅咒":从**O(n²)**到O(n³)的计算困境自注意力机制的数学表达式:Attention(Q,K,V)=softmax(QK⊤dk)V\text{
- Java序列化进阶篇
g21121
java序列化
1.transient
类一旦实现了Serializable 接口即被声明为可序列化,然而某些情况下并不是所有的属性都需要序列化,想要人为的去阻止这些属性被序列化,就需要用到transient 关键字。
- escape()、encodeURI()、encodeURIComponent()区别详解
aigo
JavaScriptWeb
原文:http://blog.sina.com.cn/s/blog_4586764e0101khi0.html
JavaScript中有三个可以对字符串编码的函数,分别是: escape,encodeURI,encodeURIComponent,相应3个解码函数:,decodeURI,decodeURIComponent 。
下面简单介绍一下它们的区别
1 escape()函
- ArcgisEngine实现对地图的放大、缩小和平移
Cb123456
添加矢量数据对地图的放大、缩小和平移Engine
ArcgisEngine实现对地图的放大、缩小和平移:
个人觉得是平移,不过网上的都是漫游,通俗的说就是把一个地图对象从一边拉到另一边而已。就看人说话吧.
具体实现:
一、引入命名空间
using ESRI.ArcGIS.Geometry;
using ESRI.ArcGIS.Controls;
二、代码实现.
- Java集合框架概述
天子之骄
Java集合框架概述
集合框架
集合框架可以理解为一个容器,该容器主要指映射(map)、集合(set)、数组(array)和列表(list)等抽象数据结构。
从本质上来说,Java集合框架的主要组成是用来操作对象的接口。不同接口描述不同的数据类型。
简单介绍:
Collection接口是最基本的接口,它定义了List和Set,List又定义了LinkLi
- 旗正4.0页面跳转传值问题
何必如此
javajsp
跳转和成功提示
a) 成功字段非空forward
成功字段非空forward,不会弹出成功字段,为jsp转发,页面能超链接传值,传输变量时需要拼接。接拼接方式list.jsp?test="+strweightUnit+"或list.jsp?test="+weightUnit+&qu
- 全网唯一:移动互联网服务器端开发课程
cocos2d-x小菜
web开发移动开发移动端开发移动互联程序员
移动互联网时代来了! App市场爆发式增长为Web开发程序员带来新一轮机遇,近两年新增创业者,几乎全部选择了移动互联网项目!传统互联网企业中超过98%的门户网站已经或者正在从单一的网站入口转向PC、手机、Pad、智能电视等多端全平台兼容体系。据统计,AppStore中超过85%的App项目都选择了PHP作为后端程
- Log4J通用配置|注意问题 笔记
7454103
DAOapachetomcatlog4jWeb
关于日志的等级 那些去 百度就知道了!
这几天 要搭个新框架 配置了 日志 记下来 !做个备忘!
#这里定义能显示到的最低级别,若定义到INFO级别,则看不到DEBUG级别的信息了~!
log4j.rootLogger=INFO,allLog
# DAO层 log记录到dao.log 控制台 和 总日志文件
log4j.logger.DAO=INFO,dao,C
- SQLServer TCP/IP 连接失败问题 ---SQL Server Configuration Manager
darkranger
sqlcwindowsSQL ServerXP
当你安装完之后,连接数据库的时候可能会发现你的TCP/IP 没有启动..
发现需要启动客户端协议 : TCP/IP
需要打开 SQL Server Configuration Manager...
却发现无法打开 SQL Server Configuration Manager..??
解决方法: C:\WINDOWS\system32目录搜索framedyn.
- [置顶] 做有中国特色的程序员
aijuans
程序员
从出版业说起 网络作品排到靠前的,都不会太难看,一般人不爱看某部作品也是因为不喜欢这个类型,而此人也不会全不喜欢这些网络作品。究其原因,是因为网络作品都是让人先白看的,看的好了才出了头。而纸质作品就不一定了,排行榜靠前的,有好作品,也有垃圾。 许多大牛都是写了博客,后来出了书。这些书也都不次,可能有人让为不好,是因为技术书不像小说,小说在读故事,技术书是在学知识或温习知识,有些技术书读得可
- document.domain 跨域问题
avords
document
document.domain用来得到当前网页的域名。比如在地址栏里输入:javascript:alert(document.domain); //www.315ta.com我们也可以给document.domain属性赋值,不过是有限制的,你只能赋成当前的域名或者基础域名。比如:javascript:alert(document.domain = "315ta.com");
- 关于管理软件的一些思考
houxinyou
管理
工作好多看年了,一直在做管理软件,不知道是我最开始做的时候产生了一些惯性的思维,还是现在接触的管理软件水平有所下降.换过好多年公司,越来越感觉现在的管理软件做的越来越乱.
在我看来,管理软件不论是以前的结构化编程,还是现在的面向对象编程,不管是CS模式,还是BS模式.模块的划分是很重要的.当然,模块的划分有很多种方式.我只是以我自己的划分方式来说一下.
做为管理软件,就像现在讲究MVC这
- NoSQL数据库之Redis数据库管理(String类型和hash类型)
bijian1013
redis数据库NoSQL
一.Redis的数据类型
1.String类型及操作
String是最简单的类型,一个key对应一个value,string类型是二进制安全的。Redis的string可以包含任何数据,比如jpg图片或者序列化的对象。
Set方法:设置key对应的值为string类型的value
- Tomcat 一些技巧
征客丶
javatomcatdos
以下操作都是在windows 环境下
一、Tomcat 启动时配置 JAVA_HOME
在 tomcat 安装目录,bin 文件夹下的 catalina.bat 或 setclasspath.bat 中添加
set JAVA_HOME=JAVA 安装目录
set JRE_HOME=JAVA 安装目录/jre
即可;
二、查看Tomcat 版本
在 tomcat 安装目
- 【Spark七十二】Spark的日志配置
bit1129
spark
在测试Spark Streaming时,大量的日志显示到控制台,影响了Spark Streaming程序代码的输出结果的查看(代码中通过println将输出打印到控制台上),可以通过修改Spark的日志配置的方式,不让Spark Streaming把它的日志显示在console
在Spark的conf目录下,把log4j.properties.template修改为log4j.p
- Haskell版冒泡排序
bookjovi
冒泡排序haskell
面试的时候问的比较多的算法题要么是binary search,要么是冒泡排序,真的不想用写C写冒泡排序了,贴上个Haskell版的,思维简单,代码简单,下次谁要是再要我用C写冒泡排序,直接上个haskell版的,让他自己去理解吧。
sort [] = []
sort [x] = [x]
sort (x:x1:xs)
| x>x1 = x1:so
- java 路径 配置文件读取
bro_feng
java
这几天做一个项目,关于路径做如下笔记,有需要供参考。
取工程内的文件,一般都要用相对路径,这个自然不用多说。
在src统计目录建配置文件目录res,在res中放入配置文件。
读取文件使用方式:
1. MyTest.class.getResourceAsStream("/res/xx.properties")
2. properties.load(MyTest.
- 读《研磨设计模式》-代码笔记-简单工厂模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
package design.pattern;
/*
* 个人理解:简单工厂模式就是IOC;
* 客户端要用到某一对象,本来是由客户创建的,现在改成由工厂创建,客户直接取就好了
*/
interface IProduct {
- SVN与JIRA的关联
chenyu19891124
SVN
SVN与JIRA的关联一直都没能装成功,今天凝聚心思花了一天时间整合好了。下面是自己整理的步骤:
一、搭建好SVN环境,尤其是要把SVN的服务注册成系统服务
二、装好JIRA,自己用是jira-4.3.4破解版
三、下载SVN与JIRA的插件并解压,然后拷贝插件包下lib包里的三个jar,放到Atlassian\JIRA 4.3.4\atlassian-jira\WEB-INF\lib下,再
- JWFDv0.96 最新设计思路
comsci
数据结构算法工作企业应用公告
随着工作流技术的发展,工作流产品的应用范围也不断的在扩展,开始进入了像金融行业(我已经看到国有四大商业银行的工作流产品招标公告了),实时生产控制和其它比较重要的工程领域,而
- vi 保存复制内容格式粘贴
daizj
vi粘贴复制保存原格式不变形
vi是linux中非常好用的文本编辑工具,功能强大无比,但对于复制带有缩进格式的内容时,粘贴的时候内容错位很严重,不会按照复制时的格式排版,vi能不能在粘贴时,按复制进的格式进行粘贴呢? 答案是肯定的,vi有一个很强大的命令可以实现此功能 。
在命令模式输入:set paste,则进入paste模式,这样再进行粘贴时
- shell脚本运行时报错误:/bin/bash^M: bad interpreter 的解决办法
dongwei_6688
shell脚本
出现原因:windows上写的脚本,直接拷贝到linux系统上运行由于格式不兼容导致
解决办法:
1. 比如文件名为myshell.sh,vim myshell.sh
2. 执行vim中的命令 : set ff?查看文件格式,如果显示fileformat=dos,证明文件格式有问题
3. 执行vim中的命令 :set fileformat=unix 将文件格式改过来就可以了,然后:w
- 高一上学期难记忆单词
dcj3sjt126com
wordenglish
honest 诚实的;正直的
argue 争论
classical 古典的
hammer 锤子
share 分享;共有
sorrow 悲哀;悲痛
adventure 冒险
error 错误;差错
closet 壁橱;储藏室
pronounce 发音;宣告
repeat 重做;重复
majority 大多数;大半
native 本国的,本地的,本国
- hibernate查询返回DTO对象,DTO封装了多个pojo对象的属性
frankco
POJOhibernate查询DTO
DTO-数据传输对象;pojo-最纯粹的java对象与数据库中的表一一对应。
简单讲:DTO起到业务数据的传递作用,pojo则与持久层数据库打交道。
有时候我们需要查询返回DTO对象,因为DTO
- Partition List
hcx2013
partition
Given a linked list and a value x, partition it such that all nodes less than x come before nodes greater than or equal to x.
You should preserve the original relative order of th
- Spring MVC测试框架详解——客户端测试
jinnianshilongnian
上一篇《Spring MVC测试框架详解——服务端测试》已经介绍了服务端测试,接下来再看看如果测试Rest客户端,对于客户端测试以前经常使用的方法是启动一个内嵌的jetty/tomcat容器,然后发送真实的请求到相应的控制器;这种方式的缺点就是速度慢;自Spring 3.2开始提供了对RestTemplate的模拟服务器测试方式,也就是说使用RestTemplate测试时无须启动服务器,而是模拟一
- 关于推荐个人观点
liyonghui160com
推荐系统关于推荐个人观点
回想起来,我也做推荐了3年多了,最近公司做了调整招聘了很多算法工程师,以为需要多么高大上的算法才能搭建起来的,从实践中走过来,我只想说【不是这样的】
第一次接触推荐系统是在四年前入职的时候,那时候,机器学习和大数据都是没有的概念,什么大数据处理开源软件根本不存在,我们用多台计算机web程序记录用户行为,用.net的w
- 不间断旋转的动画
pangyulei
动画
CABasicAnimation* rotationAnimation;
rotationAnimation = [CABasicAnimation animationWithKeyPath:@"transform.rotation.z"];
rotationAnimation.toValue = [NSNumber numberWithFloat: M
- 自定义annotation
sha1064616837
javaenumannotationreflect
对象有的属性在页面上可编辑,有的属性在页面只可读,以前都是我们在页面上写死的,时间一久有时候会混乱,此处通过自定义annotation在类属性中定义。越来越发现Java的Annotation真心很强大,可以帮我们省去很多代码,让代码看上去简洁。
下面这个例子 主要用到了
1.自定义annotation:@interface,以及几个配合着自定义注解使用的几个注解
2.简单的反射
3.枚举
- Spring 源码
up2pu
spring
1.Spring源代码
https://github.com/SpringSource/spring-framework/branches/3.2.x
注:兼容svn检出
2.运行脚本
import-into-eclipse.bat
注:需要设置JAVA_HOME为jdk 1.7
build.gradle
compileJava {
sourceCompatibilit
- 利用word分词来计算文本相似度
yangshangchuan
wordword分词文本相似度余弦相似度简单共有词
word分词提供了多种文本相似度计算方式:
方式一:余弦相似度,通过计算两个向量的夹角余弦值来评估他们的相似度
实现类:org.apdplat.word.analysis.CosineTextSimilarity
用法如下:
String text1 = "我爱购物";
String text2 = "我爱读书";
String text3 =