7 -15 0 5 10 -5 8 20 25 15 -4 24 14 0 -6 16 4 2 15 10 22 30 10 36 20 34 0 40 16
228
这道题和求矩形面积差不多,但难度更大,现在只会第一种方法,有时间再学第二种。这里我用两次扫描,扫描x轴和y轴,每家入一条线段,如果投影在x轴或者y轴上的总长度发生改变,那么就加上这条线段的长度。
<pre name="code" class="cpp">#include<stdio.h> #include<string.h> #include<math.h> #include<algorithm> using namespace std; struct edge{ int x2,x3,y,f; }s[5005*2]; struct edge1{ int y2,y3,x,f; }s1[5005*2]; int sum[5005*2],sum1[5005*2]; bool cmp1(edge a,edge b){ return a.y<b.y; } bool cmp2(edge1 a,edge1 b){ return a.x<b.x; } struct node{ int l,r,cnt,len; }b[2*10100*4]; void build(int l,int r,int i) { int mid; b[i].l=l;b[i].r=r;b[i].cnt=b[i].len=0; mid=(l+r)>>1; if(l==r)return; build(l,mid,i<<1); build(mid+1,r,i<<1|1); } void getline(int i) { if(b[i].cnt)b[i].len=b[i].r-b[i].l+1; else if(b[i].l==b[i].r)b[i].len=0; else b[i].len=b[i<<1].len+b[i<<1|1].len; } void update(int l,int r,int add,int i) { int mid; if(b[i].l==l && b[i].r==r){ b[i].cnt+=add; getline(i);return; } mid=(b[i].l+b[i].r)>>1; if(r<=mid)update(l,r,add,i<<1); else if(l>mid)update(l,r,add,i<<1|1); else{ update(l,mid,add,i<<1); update(mid+1,r,add,i<<1|1); } getline(i); } int main() { int n,m,i,j,x2,x3,y2,y3,num,ans,num1; while(scanf("%d",&n)!=EOF) { if(n==0){ printf("0\n");continue; } num=0;num1=0; for(i=1;i<=n;i++){ scanf("%d%d%d%d",&x2,&y2,&x3,&y3); num++; s[num].x2=x2;s[num].x3=x3;s[num].y=y2;s[num].f=1; num++; s[num].x2=x2;s[num].x3=x3;s[num].y=y3;s[num].f=-1; num1++; s1[num1].y2=y2;s1[num1].y3=y3;s1[num1].x=x2;s1[num1].f=1; num1++; s1[num1].y2=y2;s1[num1].y3=y3;s1[num1].x=x3;s1[num1].f=-1; } sort(s+1,s+1+num,cmp1); build(-10000,10000,1); memset(sum,0,sizeof(sum)); sum[0]=0;ans=0; for(i=1;i<=num;i++){ update(s[i].x2,s[i].x3-1,s[i].f,1); sum[i]=b[1].len; if(abs(sum[i]-sum[i-1])>0)ans+=abs(sum[i]-sum[i-1]); } sort(s1+1,s1+1+num1,cmp2); build(-10000,10000,1); memset(sum1,0,sizeof(sum1)); sum1[0]=0; for(i=1;i<=num1;i++){ update(s1[i].y2,s1[i].y3-1,s1[i].f,1); sum1[i]=b[1].len; if(abs(sum1[i]-sum1[i-1])>0)ans+=abs(sum1[i]-sum1[i-1]); //printf("%d\n",ans); } printf("%d\n",ans); } return 0; }