根据题意:最后就是求f(b) + f(k + b) + f(2 * k + b) + …+ f((n-1) * k + b)
显然f(b) = A^b
其中A =
1 1
1 0
所以sum(n - 1) = A^b(E + A^ k + A ^(2 * k) + … + A ^((n - 1) * k)
设D = A^k
sum(n-1) = A^b(E + D + D ^ 2 + … + D ^(n - 1))
括号里的部分就可以二分递归求出来了
而单个矩阵就可以用矩阵快速幂求出来
/************************************************************************* > File Name: hdu1588.cpp > Author: ALex > Mail: [email protected] > Created Time: 2015年03月12日 星期四 18时25分07秒 ************************************************************************/
#include <map>
#include <set>
#include <queue>
#include <stack>
#include <vector>
#include <cmath>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std;
const double pi = acos(-1.0);
const int inf = 0x3f3f3f3f;
const double eps = 1e-15;
typedef long long LL;
typedef pair <int, int> PLL;
LL mod, k, b;
class MARTIX
{
public:
LL mat[3][3];
MARTIX();
MARTIX operator * (const MARTIX &b)const;
MARTIX operator + (const MARTIX &b)const;
MARTIX& operator = (const MARTIX &b);
}A, E, D;
MARTIX :: MARTIX()
{
memset (mat, 0, sizeof(mat));
}
MARTIX MARTIX :: operator * (const MARTIX &b)const
{
MARTIX ret;
for (int i = 0; i < 2; ++i)
{
for (int j = 0; j < 2; ++j)
{
for (int k = 0; k < 2; ++k)
{
ret.mat[i][j] += this -> mat[i][k] * b.mat[k][j];
ret.mat[i][j] %= mod;
}
}
}
return ret;
}
MARTIX MARTIX :: operator + (const MARTIX &b)const
{
MARTIX ret;
for (int i = 0; i < 2; ++i)
{
for (int j = 0; j < 2; ++j)
{
ret.mat[i][j] = this -> mat[i][j] + b.mat[i][j];
ret.mat[i][j] %= mod;
}
}
return ret;
}
MARTIX& MARTIX :: operator = (const MARTIX &b)
{
for (int i = 0; i < 2; ++i)
{
for (int j = 0; j < 2; ++j)
{
this -> mat[i][j] = b.mat[i][j];
}
}
return *this;
}
MARTIX fastpow(MARTIX ret, LL n)
{
MARTIX ans;
ans.mat[0][0] = ans.mat[1][1] = 1;
while (n)
{
if (n & 1)
{
ans = ans * ret;
}
n >>= 1;
ret = ret * ret;
}
return ans;
}
void Debug(MARTIX A)
{
for (int i = 0; i < 2; ++i)
{
for (int j = 0; j < 2; ++j)
{
printf("%lld ", A.mat[i][j]);
}
printf("\n");
}
}
MARTIX binseach(LL n)
{
if (n == 1)
{
return D;
}
MARTIX nxt = binseach(n >> 1);
MARTIX B = fastpow(D, n / 2);
B = B + E;
nxt = nxt * B;
if (n & 1)
{
MARTIX C = fastpow(D, n);
nxt = nxt + C;
}
return nxt;
}
int main()
{
LL n;
E.mat[0][0] = E.mat[1][1] = 1;
A.mat[0][0] = A.mat[0][1] = A.mat[1][0] = 1;
// Debug(A);
while (~scanf("%lld%lld%lld%lld", &k, &b, &n, &mod))
{
if (n == 1)
{
MARTIX x = fastpow(A, b);
printf("%lld\n", x.mat[0][1]);
continue;
}
D = fastpow(A, k);
MARTIX ans = binseach(n - 1);
ans = ans + E;
MARTIX base = fastpow(A, b);
ans = base * ans;
// Debug(ans);
printf("%lld\n", ans.mat[0][1]);
}
return 0;
}