#include <iostream> #include <cstdio> #define maxn 80010 #define Fup(i, s, t) for (int i = s; i <= t; i ++) #define Fdn(i, s, t) for (int i = s; i >= t; i --) using namespace std; struct node { int ls;//左端空区间的长度 int rs;//右端空区间的长度 int ms;//最长子区间的长度 int pos;//开始位置 int mark;//懒惰标记(0:未定 , 1:全空 2:全满) } tree[4 * maxn];//线段树 int n, m; void build_tree(int l, int r, int i) {//构建全空的线段树 tree[i].ls = tree[i].rs = tree[i].ms = r - l + 1; tree[i].pos = l; if (l == r) return; int mid = (l + r) / 2; build_tree(l, mid, i + i); build_tree(mid + 1, r, i + i + 1); } bool all_space(int l, int r, int i) {//判断根为i的区间[l,r]是否全空... if (tree[i].ls == r - l + 1) return 1; return 0; } void update(int l, int r, int i) {//通过标记法维护线段树.. if (!tree[i].mark) return; if (tree[i].mark == 1) { int len = r - l + 1; tree[i + i].ls = tree[i + i].rs = tree[i + i].ms = (len + 1) / 2; tree[i + i].pos = l; tree[i + i + 1].ls = tree[i + i + 1].rs = tree[i + i + 1].ms = len / 2; tree[i + i + 1].pos = (l + r) / 2 + 1; tree[i + i].mark = tree[i + i + 1].mark = 1; } else { tree[i + i].ls = tree[i + i].rs = tree[i + i].ms = 0; tree[i + i].pos = l; tree[i + i + 1].ls = tree[i + i + 1].rs = tree[i + i + 1].ms = 0; tree[i + i + 1].pos = (l + r) / 2 + 1; tree[i + i].mark = tree[i + i + 1].mark = 2; } tree[i].mark = 0; } /** * 查询根为i的区间[l,r]是否存在长度为d的区间.. * 如果存在则返回返回其左指针.. * 否则返回0 */ int query(int d, int l, int r, int i) { update(l, r, i); if (tree[i].ms < d) return 0; if (tree[i].ms == d) return tree[i].pos; int mid = (l + r) / 2; if (tree[i + i].ms >= d) return query(d, l, mid, i + i); if (tree[i + i].rs + tree[i + i + 1].ls >= d) return mid - tree[i + i].rs + 1; return query(d, mid + 1, r, i + i + 1); } /** * 在根为i的区间[l,r]上插入或删除子区间[tl,tr],插删标记为flag */ void change(int tl, int tr, int l, int r, int i, bool flag) { if (tl > r || tr < l) return; if (tl <= l && r <= tr) { if (flag) { tree[i].ls = tree[i].rs = tree[i].ms = 0; tree[i].pos = l; tree[i].mark = 2; } else { tree[i].ls = tree[i].rs = tree[i].ms = r - l + 1; tree[i].pos = l; tree[i].mark = 1; } return; } update(l, r, i); int mid = (l + r) / 2; change(tl, tr, l, mid, i + i, flag); change(tl, tr, mid + 1, r, i + i + 1, flag); tree[i].ls = tree[i + i].ls; if (all_space(l, mid, i + i)) tree[i].ls += tree[i + i + 1].ls; tree[i].rs = tree[i + i + 1].rs; if (all_space(mid + 1, r, i + i + 1)) tree[i].rs += tree[i + i].rs; tree[i].ms = max(tree[i + i].rs + tree[i + i + 1].ls, max(tree[i + i].ms, tree[i + i + 1].ms)); if (tree[i].ms == tree[i + i].ms) tree[i].pos = tree[i + i].pos; else if (tree[i].ms == tree[i + i].rs + tree[i + i + 1].ls) tree[i].pos = mid - tree[i + i].rs + 1; else tree[i].pos = tree[i + i + 1].pos; } int main() { while (scanf("%d%d", &n, &m) != EOF) { memset(tree, 0, sizeof(tree)); build_tree(1, n, 1); int i; for (i = 1; i <= m; ++i) { int kind; scanf("%d", &kind); if (kind == 1) { int d; scanf("%d", &d); int ans = query(d, 1, n, 1); printf("%d\n", ans); if (ans) { change(ans, ans + d - 1, 1, n, 1, 1); } } else { int x, d; scanf("%d%d", &x, &d); change(x, x + d - 1, 1, n, 1, 0); } } } return 0; }