Problem Description
Read the program below carefully then answer the question.
const int MAX=100000*2;
const int INF=1e9;
int main()
{
int n,m,ans,i;
while(scanf(“%d%d”,&n,&m)!=EOF)
{
ans=0;
for(i=1;i<=n;i++)
{
if(i&1)ans=(ans*2+1)%m;
else ans=ans*2%m;
}
printf(“%d\n”,ans);
}
return 0;
}
Input
Multi test cases,each line will contain two integers n and m. Process to end of file.
[Technical Specification]
1<=n, m <= 1000000000
Output
For each case,output an integer,represents the output of above program.
Sample Input
1 10 3 100
Sample Output
1 5
Source
BestCoder Round #8
Recommend
heyang | We have carefully selected several similar problems for you: 5189 5188 5186 5185 5184
n很大,线性方法不行
第一个奇数是1,产生的1经过了n-1次乘法,最终是2^(n-1)
第二个奇数是3,产生的1经过了n-3次乘法,最终是2^(n-3)
……
因此最后就是2^(n - 1) + 2 ^ (n -3 ) + …..
可以分n奇偶考虑
奇数: 2^0 + 2 ^ 2 + …. + 2 ^ (n-1) -> 4^0 + 4^1 + …+ 4 ^(n-1)/2
偶数:2 * (4^0 + 4^1 + … + 4^(n -2) / 2)
->矩阵快速幂求出即可
/************************************************************************* > File Name: hdu4990.cpp > Author: ALex > Mail: [email protected] > Created Time: 2015年03月15日 星期日 20时32分47秒 ************************************************************************/
#include <map>
#include <set>
#include <queue>
#include <stack>
#include <vector>
#include <cmath>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std;
const double pi = acos(-1.0);
const int inf = 0x3f3f3f3f;
const double eps = 1e-15;
typedef long long LL;
typedef pair <int, int> PLL;
LL mod, n;
class MARTIX
{
public:
LL mat[5][5];
MARTIX();
MARTIX operator * (const MARTIX &b)const;
MARTIX& operator = (const MARTIX &b);
}A;
MARTIX::MARTIX()
{
memset (mat, 0, sizeof(mat));
}
MARTIX MARTIX :: operator * (const MARTIX &b)const
{
MARTIX ret;
for (int i = 0; i < 3; ++i)
{
for (int j = 0; j < 3; ++j)
{
for (int k = 0; k < 3; ++k)
{
ret.mat[i][j] += this -> mat[i][k] * b.mat[k][j];
ret.mat[i][j] %= mod;
}
}
}
return ret;
}
MARTIX& MARTIX :: operator = (const MARTIX &b)
{
for (int i = 0; i < 3; ++i)
{
for (int j = 0; j < 3; ++j)
{
this -> mat[i][j] = b.mat[i][j];
}
}
return *this;
}
MARTIX fastpow(MARTIX ret, LL n)
{
MARTIX ans;
for (int i = 0; i < 3; ++i)
{
ans.mat[i][i] = 1;
}
while (n)
{
if (n & 1)
{
ans = ans * ret;
}
ret = ret * ret;
n >>= 1;
}
return ans;
}
void Debug(MARTIX A)
{
for (int i = 0; i < 3; ++i)
{
for (int j = 0; j < 3; ++j)
{
printf("%lld ", A.mat[i][j]);
}
printf("\n");
}
}
int main ()
{
while (~scanf("%lld%lld", &n, &mod))
{
A.mat[0][0] = A.mat[0][2] = 4 % mod;
A.mat[0][1] = A.mat[2][2] = 1 % mod;
MARTIX F;
F.mat[0][0] = 4 % mod;
F.mat[0][1] = 1 % mod;
F.mat[0][2] = 5 % mod;
if (n == 0 || n == 1 || n == 2)
{
printf("%lld\n", n % mod);
continue;
}
if (n & 1)
{
int cnt = ((n - 1) >> 1);
MARTIX ans = fastpow(A, cnt - 1);
ans = F * ans;
printf("%lld\n", ans.mat[0][2]);
}
else
{
MARTIX ans = fastpow(A, ((n - 2) >> 1) - 1);
ans = F * ans;
printf("%lld\n", ans.mat[0][2] * 2 % mod);
}
}
return 0;
}