Hadoop中的DistributedCache

1、DistributedCache In Hadoop

此篇文章主要是前一篇的后续,主要讲Hadoop的分布式缓存机制的原理与运用。

分布式缓存在MapReduce中称之为DistributedCache,它可以方便map task之间或者reduce task之间共享一些信息,同时也可以将第三方包添加到其classpath路径中去。Hadoop会将缓存数据分发到集群的所有准备启动的节点上,复制到在mapred.temp.dir中配置的目录。

2、DistributedCache的使用

DistributedCache的使用的本质其实是添加Configuraton中的属性:mapred.cache.{files|archives}。图方便的话,可以使用DistributedCache类的静态方法。

不省事法:

conf.set("mapred.cache.files", "/data/data");

conf.set("mapred.cache. archives", "/data/data.zip");

省事法:

DistributedCache. addCacheFile(URI, Configuration)

DistributedCache.addArchiveToClassPath(Path, Configuration, FileSystem)

需要注意的是,上面几行代码需要写在Job类初始化之前,否则在运行会中找不到文件(被折磨了很长时间),因为Job初始化时将传入Configuration对象克隆一份给了JobContext。

在MapReduce的0.21版本以后的org.apache.hadoop.mapreduce均移到org.apache.hadoop.mapred包下。但文档中提供的configure方法是重写的MapReduceBase中的,而新版本中map继承于mapper,reduce继承于reducer,所以configure方法一律改成了setup。要获得cache数据,就得在map/reduce task中的setup方法中取得cache数据,再进行相应操作:

  1. @Override
  2. protected void setup(Context context) throws IOException,
  3. InterruptedException {
  4. super.setup(context);
  5. URI[] uris = DistributedCache.getCacheFiles(context
  6. .getConfiguration());
  7. Path[] paths = DistributedCache.getLocalCacheFiles(context
  8. .getConfiguration());
  9. // TODO
  10. }

而三方库的使用稍微简单,只需要将库上传至hdfs,再用代码添加至classpath即可:

DistributedCache.addArchiveToClassPath(new Path("/data/test.jar"), conf);

3、symlink的使用

Symlink其实就是hdfs文件的一个快捷方式,只需要在路径名后加入#linkname,之后在task中使用linkname即使用相应文件,如下:

conf.set("mapred.cache.files", "/data/data#mData");

conf.set("mapred.cache. archives", "/data/data.zip#mDataZip");

  1. @Override
  2. protected void setup(Context context) throws IOException,
  3. InterruptedException {
  4. super.setup(context);
  5. FileReader reader = new FileReader(new File("mData"));
  6. BufferedReader bReader = new BufferedReader(reader);
  7. // TODO
  8. }

在使用symlink之前,需要告知hadoop,如下:

conf.set("mapred.create.symlink", "yes"); // 是yes,不是true

DistributedCache.createSymlink(Configuration)

4、注意事项

1)缓存文件(数据、三方库)需上传至HDFS,方能使用;

2)缓存较小的情况下,建议将数据全部读入相应节点内存,提高访问速度;

3)缓存文件是read-only的,不能修改。若要修改得重新输出,将新输出文件作为新缓存进入下一次迭代。

你可能感兴趣的:(Hadoop中的DistributedCache)