简述:
实现AVL 树,主要是两个功能 : 插入某节点和删除某节点
AVL Tree的定义,
1. 是一棵二叉搜索树(故而每个节点是惟一的, 如果出现重复数字会破坏平衡树的算法)
2. 每个节点左右子树的高度之差(平衡因子)相差最多为1
实现:
为了使所得的二叉树为平衡二叉树,
首先在BSTNode中加了一个计算节点高度的方法getHeight(), 当两个节点高度相差2的时候,视为平衡破坏
int getHeight(){ if(this == NULL) return 0; if(left == NULL && right == NULL) return 1; else{ return 1 + max(left->getHeight(), right->getHeight()); } }
1) LL, 新建在左子树的左节点上
LL代码实现:
template<class Type> BSTNode<Type>* AVLTree<Type>::LL(BSTNode<Type>* &topNode){ BSTNode<Type> * leftSonNode = topNode->left; topNode->left = leftSonNode->right; leftSonNode->right = topNode; return leftSonNode; }
2) RR, 新建在右子树的右节点上
RR代码实现:
template<class Type> BSTNode<Type>* AVLTree<Type>::RR(BSTNode<Type>* &topNode){ BSTNode<Type> *rightSonNode = topNode->right; topNode->right = rightSonNode->left; rightSonNode->left = topNode; return rightSonNode; }
3) LR, 新建在左子树的右节点上
LR代码实现:
template<class Type> BSTNode<Type>* AVLTree<Type>::LR(BSTNode<Type>* &topNode){ topNode->left = RR(topNode->left); return LL(topNode); }
4) RL, 新建在右子树的左节点上
RL代码实现:
template<class Type> BSTNode<Type>* AVLTree<Type>::RL(BSTNode<Type>* &topNode){ topNode->right = LL(topNode->right); return RR(topNode); }
对于删除操作,每一次删除一个节点之后,优先考虑其子节点的最左节点的值替换删除节点,但是需要注意的是,
在替换之后需要自修改节点向下每个节点做Rotate操作,用来处理因为删除某个节点之后平衡树的破坏
下面是Delete函数的实现:
template<class Type> BSTNode<Type>* AVLTree<Type>::Delete(const Type& key){ return root = Delete(root, key); } template<class Type> BSTNode<Type>* AVLTree<Type>::Delete(BSTNode<Type>* &node, const Type &key){ if(node == NULL){ return NULL; } /** * if we find the matched key, * delete the matched node and replace it by the most left node * of its right child */ else if(key == node->key){ if(!node->right){ BSTNode<Type> *newNode = node->left; delete node; return newNode; }else{ BSTNode<Type> *secondMostLeftNode = node->right; if(secondMostLeftNode->left == NULL){ return secondMostLeftNode; } while(secondMostLeftNode->left->left) secondMostLeftNode = secondMostLeftNode->left; BSTNode<Type> *mostLeftNode = secondMostLeftNode->left; secondMostLeftNode->left->left = node->left; secondMostLeftNode->left->right = node->right; secondMostLeftNode->left = NULL; return mostLeftNode; } } //from bottom to the top else if(key < node->key){ node->left = Delete(node->left, key); } else{ node->right = Delete(node->right, key); } if(node->left) node->left = Rotate(node->left); if(node->right) node->right = Rotate(node->right); node = Rotate(node); return node; } /** * Rotate one node and its sub tree */ template<class Type> BSTNode<Type>* AVLTree<Type>::Rotate(BSTNode<Type>* node){ if(node->left->getHeight() - node->right->getHeight() == 2){ if(node->left->left->getHeight() >= node->left->right->getHeight()) node = LL(node); else node = LR(node); } if(node->right->getHeight() - node->left->getHeight() == 2){ if(node->right->right->getHeight() >= node->right->left->getHeight()) node = RR(node); else node = RL(node); } return node; }
之后是整个平衡树插入删除节点实现以及在main函数中测试的代码:
#include <iostream> #include <ctime> #include <cstdlib> using namespace std; template<class Type> class AVLTree; /** * Binary Search Tree Node: BSTNode class */ template<class Type> class BSTNode{ friend class AVLTree<Type>; private: Type key; BSTNode *left; BSTNode *right; public: BSTNode(): left(NULL), right(NULL){} BSTNode(const Type& key): key(key), left(NULL), right(NULL){} Type getkey(){return key;} int getHeight(){ if(this == NULL) return 0; if(left == NULL && right == NULL) return 1; else{ return 1 + max(left->getHeight(), right->getHeight()); } } void clear(){ if(this == NULL) return; left->clear(); right->clear(); delete this; } void Output_DLR(){ //Node -> left -> Right order if(this != NULL){ cout << key << ", "; left->Output_DLR(); right->Output_DLR(); } } }; /** * AVLTree class */ template<class Type> class AVLTree{ private: BSTNode<Type> *root; public: AVLTree(): root(NULL){} BSTNode<Type>* Insert(BSTNode<Type>* &, const Type&); BSTNode<Type>* Insert(const Type& ); BSTNode<Type>* Delete(BSTNode<Type>* &, const Type&); BSTNode<Type>* Delete(const Type& ); BSTNode<Type>* Rotate(BSTNode<Type>* ); BSTNode<Type>* GetRoot(); BSTNode<Type>* LL(BSTNode<Type>* &); BSTNode<Type>* LR(BSTNode<Type>* &); BSTNode<Type>* RL(BSTNode<Type>* &); BSTNode<Type>* RR(BSTNode<Type>* &); void Clear(); void Output_DLR(); void Output_LRN(); }; template<class Type> BSTNode<Type>* AVLTree<Type>::LL(BSTNode<Type>* &topNode){ BSTNode<Type> * leftSonNode = topNode->left; topNode->left = leftSonNode->right; leftSonNode->right = topNode; return leftSonNode; } template<class Type> BSTNode<Type>* AVLTree<Type>::RR(BSTNode<Type>* &topNode){ BSTNode<Type> *rightSonNode = topNode->right; topNode->right = rightSonNode->left; rightSonNode->left = topNode; return rightSonNode; } template<class Type> BSTNode<Type>* AVLTree<Type>::LR(BSTNode<Type>* &topNode){ topNode->left = RR(topNode->left); return LL(topNode); } template<class Type> BSTNode<Type>* AVLTree<Type>::RL(BSTNode<Type>* &topNode){ topNode->right = LL(topNode->right); return RR(topNode); } template<class Type> BSTNode<Type>* AVLTree<Type>::GetRoot(){ return root; } template<class Type> BSTNode<Type>* AVLTree<Type>::Insert(const Type& key){ return Insert(root, key); } template<class Type> BSTNode<Type>* AVLTree<Type>::Insert(BSTNode<Type>* &node, const Type &key){ if(node == NULL){ return node = new BSTNode<Type>(key); } //from bottom to the top else if(key < node->key){ Insert(node->left, key); if(node->left->getHeight() - node->right->getHeight() == 2){ if(key < node->left->key) node = LL(node); else node = LR(node); } } else{ Insert(node->right, key); if(node->right->getHeight() - node->left->getHeight() == 2){ if(key > node->right->key) node = RR(node); else node = RL(node); } } return node; } template<class Type> BSTNode<Type>* AVLTree<Type>::Delete(const Type& key){ return root = Delete(root, key); } template<class Type> BSTNode<Type>* AVLTree<Type>::Delete(BSTNode<Type>* &node, const Type &key){ if(node == NULL){ return NULL; } /** * if we find the matched key, * delete the matched node and replace it by the most left node * of its right child */ else if(key == node->key){ if(!node->right){ BSTNode<Type> *newNode = node->left; delete node; return newNode; }else{ BSTNode<Type> *secondMostLeftNode = node->right; if(secondMostLeftNode->left == NULL){ return secondMostLeftNode; } while(secondMostLeftNode->left->left) secondMostLeftNode = secondMostLeftNode->left; BSTNode<Type> *mostLeftNode = secondMostLeftNode->left; secondMostLeftNode->left->left = node->left; secondMostLeftNode->left->right = node->right; secondMostLeftNode->left = NULL; return mostLeftNode; } } //from bottom to the top else if(key < node->key){ node->left = Delete(node->left, key); } else{ node->right = Delete(node->right, key); } if(node->left) node->left = Rotate(node->left); if(node->right) node->right = Rotate(node->right); node = Rotate(node); return node; } /** * Rotate one node and its sub tree */ template<class Type> BSTNode<Type>* AVLTree<Type>::Rotate(BSTNode<Type>* node){ if(node->left->getHeight() - node->right->getHeight() == 2){ if(node->left->left->getHeight() >= node->left->right->getHeight()) node = LL(node); else node = LR(node); } if(node->right->getHeight() - node->left->getHeight() == 2){ if(node->right->right->getHeight() >= node->right->left->getHeight()) node = RR(node); else node = RL(node); } return node; } template<class Type> void AVLTree<Type>::Clear(){ root->clear(); root = NULL; } template<class Type> void AVLTree<Type>::Output_DLR(){ if(!root) cout << "EMPTY TREE! " << endl; else root->Output_DLR(); } template<class Type> void AVLTree<Type>::Output_LRN(){ if(!root) cout << "EMPTY TREE! " << endl; else root->Output_LRN(); } //Test Main int main() { AVLTree<int> *tree = new AVLTree<int>(); cout << "First, Test Insert(key) funciton: " << endl; cout << "Test LL : " << endl; //test LL tree->Insert(8); tree->Insert(6); tree->Insert(11); tree->Insert(4); tree->Insert(7); tree->Insert(2); cout << "DLR Output LL: " << endl; tree->GetRoot()->Output_DLR(); tree->Clear(); //test RR cout << endl << endl << "Test RR : " << endl; tree->Insert(8); tree->Insert(6); tree->Insert(10); tree->Insert(9); tree->Insert(12); tree->Insert(14); cout << "DLR Output RR: " << endl; tree->GetRoot()->Output_DLR(); tree->Clear(); //test LR cout << endl << endl << "Test LR : " << endl; tree->Insert(9); tree->Insert(6); tree->Insert(11); tree->Insert(4); tree->Insert(7); tree->Insert(8); cout << "DLR Output LR: " << endl; tree->GetRoot()->Output_DLR(); tree->Clear(); //test RL cout << endl << endl << "Test RL : " << endl; tree->Insert(6); tree->Insert(4); tree->Insert(12); tree->Insert(10); tree->Insert(14); tree->Insert(8); cout << "DLR Output RL: " << endl; tree->GetRoot()->Output_DLR(); tree->Clear(); //test Delete(const Type& ) cout << endl << endl << "Test Delete : " << endl; tree->Insert(6); tree->Insert(7); tree->Insert(9); tree->Insert(13); tree->Insert(15); tree->Insert(4); tree->Insert(5); tree->Insert(17); tree->Insert(19); tree->Insert(12); tree->Insert(10); tree->Insert(14); tree->Insert(8); cout << "DLR Output Before Delete: " << endl; tree->Output_DLR(); tree->Delete(7); cout << endl << "DLR Output After Delete: " << endl; tree->Output_DLR(); tree->Clear(); return 0; }
测试输出:
对于最后的测试Delete的结果,平衡树的改变可以观察下面这副,数据是相同的