协程可以认为是一种用户态的线程,与系统提供的线程不同点是,它需要主动让出CPU时间,而不是由系统进行调度,即控制权在程序员手上。
既然看成是用户态线程,那必然要求程序员自己进行各个协程的调度,这样就必须提供一种机制供编写协程的人将当前协程挂起,即保存协程运行场景的一些数据,调度器在其他协程挂起时再将此协程运行场景的数据恢复,以便继续运行。这里我们将协程运行场景的数据称为上下文。
在linux里,有getcontext和swapcontext等接口来获取当前的上下文数据和切换上下文。那如果没有提供相应的接口,又该如何来实现呢?
其实说到底,保存下上文数据,不外乎就是保存下当前运行的栈空间的数据,还有cpu各个寄存器相应的值。只要我们能够将其保存下来,在特定的时刻恢复回去就可以了。
有人用c提供的接口setjmp和longjmp来实现协程的切换和恢复,但这里要介绍另外一种方式,即用汇编来保存/恢复cpu寄存器的值。
用汇编的方式依赖于特定的平台,这里举例的是i386 32位的*nix平台。
在开始贴代码前,要先说一个概念–栈帧。
ia32程序用程序栈来支持过程调用。机器用栈来传递过程参数、存储返回信息、保存寄存器用于以后恢复,以及本地存储。为单个过程分配的那部分栈称为栈帧。下图描绘了linux下栈帧的通用结构。栈帧的最顶端以两个指针界定,寄存器%ebp为帧指针,而寄存器%esp为栈指针。当程序执行时,栈指针可以移动,因此大多数信息的访问都是相对于帧指针的。
这里我们可以看到,在调用一个函数前,都会先将各个参数、调用者在被调用函数返回时执行的下一条指令的地址–返回地址压栈,被调用函数在开始前会将%ebp的值保存,然后将当前%esp的值赋予%ebp。弄明白帧指针和栈指针的作用,以及返回地址等如何通过%ebp来获取的话,对下面保存当前上下文的汇编代码理解比较有帮助。struct mcontext { /* * The first 20 fields must match the definition of * sigcontext. So that we can support sigcontext * and ucontext_t at the same time. */ int mc_onstack; /* XXX - sigcontext compat. */ int mc_gs; int mc_fs; int mc_es; int mc_ds; int mc_edi; int mc_esi; int mc_ebp; int mc_isp; int mc_ebx; int mc_edx; int mc_ecx; int mc_eax; int mc_trapno; int mc_err; int mc_eip; int mc_cs; int mc_eflags; int mc_esp; /* machine state */ int mc_ss; int mc_fpregs[28]; /* env87 + fpacc87 + u_long */ int __spare__[17]; }; struct ucontext { /* * Keep the order of the first two fields. Also, * keep them the first two fields in the structure. * This way we can have a union with struct * sigcontext and ucontext_t. This allows us to * support them both at the same time. * note: the union is not defined, though. */ sigset_t uc_sigmask; mcontext_t uc_mcontext; struct __ucontext *uc_link; stack_t uc_stack; int __spare__[8]; };
/*保存当前上下文的汇编实现*/ .globl GET GET: movl 4(%esp), %eax movl %fs, 8(%eax) movl %es, 12(%eax) movl %ds, 16(%eax) movl %ss, 76(%eax) movl %edi, 20(%eax) movl %esi, 24(%eax) movl %ebp, 28(%eax) movl %ebx, 36(%eax) movl %edx, 40(%eax) movl %ecx, 44(%eax) movl $1, 48(%eax) /* %eax */ movl (%esp), %ecx /* %eip */ movl %ecx, 60(%eax) leal 4(%esp), %ecx /* %esp */ movl %ecx, 72(%eax) movl 44(%eax), %ecx /* restore %ecx */ movl $0, %eax ret
.globl SET SET: movl 4(%esp), %eax movl 8(%eax), %fs movl 12(%eax), %es movl 16(%eax), %ds movl 76(%eax), %ss movl 20(%eax), %edi movl 24(%eax), %esi movl 28(%eax), %ebp movl 36(%eax), %ebx movl 40(%eax), %edx movl 44(%eax), %ecx movl 72(%eax), %esp pushl 60(%eax) /* new %eip */ movl 48(%eax), %eax ret
至于恢复上下文的SET函数,要说的就是它是如何来改变%eip寄存器的值。根据上面第17行的汇编代码,它只是将新的%eip的值压栈而已,并不是直接赋予ip寄存器。我们这里再看一下当执行到ret后会怎么样。ret可以等效于这句指令–pop %eip。当SET函数返回后即将刚刚压栈的新的%eip的值恢复到ip寄存器当中去了。
使用汇编实现的GET和SET函数,实际上就可以进行上下文的保存和恢复了。但是要实现协程这还不够,协程跟线程一样,都是提供一个函数做为入口,那我们还需要为协程构建好调用其函数入口的准备,即参数压栈,栈指针的指向,还有返回地址的保存等。
void makecontext(ucontext_t *ucp, void (*func)(void), int argc, ...) { int *sp; sp = (int*)ucp->uc_stack.ss_sp+ucp->uc_stack.ss_size/4; sp -= argc; sp = (void*)((uintptr_t)sp - (uintptr_t)sp%16); /* 16-align for OS X */ memmove(sp, &argc+1, argc*sizeof(int)); *--sp = 0; /* return address */ ucp->uc_mcontext.mc_eip = (long)func; ucp->uc_mcontext.mc_esp = (int)sp; }
第6到第9行实现了用户指定参数的入栈,第11行将返回地址指定为0.实际上linux实现的makecontext接口会根据ucontext结构体uc_link指向的值来进行设定,可以让其返回到另外一个协程继续执行。
12、13行分别设定了ip寄存器和栈指针的值,这就指定了协程开始运行的指令地址和所使用的栈空间。
makecontext函数的调用往往会伴随着SET函数的调用,由于makecontext已经指定好用户传进来的函数入口地址和栈空间的起始地址了,而SET函数返回后就会开始执行用户指定的函数了,协程开始了。
注:上述引用代码均来自于开源项目libtask。