In order to prepare the “The First National ACM School Contest”(in 20??) the major of the city decided to provide all the schools with a reliable source of power. (The major is really afraid of blackoutsJ). So, in order to do that, power station “Future” and one school (doesn’t matter which one) must be connected; in addition, some schools must be connected as well.
You may assume that a school has a reliable source of power if it’s connected directly to “Future”, or to any other school that has a reliable source of power. You are given the cost of connection between some schools. The major has decided to pick out two the cheapest connection plans – the cost of the connection is equal to the sum of the connections between the schools. Your task is to help the major – find the cost of the two cheapest connection plans.
The Input starts with the number of test cases, T (1£T£15) on a line. Then T test cases follow. The first line of every test case contains two numbers, which are separated by a space, N (3£N£100) the number of schools in the city, and M the number of possible connections among them. Next M lines contain three numbers Ai, Bi, Ci , where Ci is the cost of the connection (1£Ci£300) between schools Ai and Bi. The schools are numbered with integers in the range 1 to N.
For every test case print only one line of output. This line should contain two numbers separated by a single space - the cost of two the cheapest connection plans. Let S1 be the cheapest cost and S2 the next cheapest cost. It’s important, that S1=S2 if and only if there are two cheapest plans, otherwise S1£S2. You can assume that it is always possible to find the costs S1 and S2..
Sample Input |
Sample Output |
2 5 8 1 3 75 3 4 51 2 4 19 3 2 95 2 5 42 5 4 31 1 2 9 3 5 66 9 14 1 2 4 1 8 8 2 8 11 3 2 8 8 9 7 8 7 1 7 9 6 9 3 2 3 4 7 3 6 4 7 6 2 4 6 14 4 5 9 5 6 10 |
110 121 37 37 |
求最小生成树和次小生成树。
次小生成树:先求最小生成树,记录最小生成树上的边,然后用DFS(BFS也行)求出任意两点u,v在最小生成树上唯一路径上的最大边maxe[u][v],那么只要枚举增加一条不在最小生成树上的边u,v,并且删除u-v在最小生成树路径上的最大边maxe[u][v](增加边后形成环,删掉一条边后任意两点仍然相互可达),在枚举的里面找到一个最小的生成树就是次小生成树。很明显次小生成树是最小生成树删掉一条边加上一条新边,不可能删掉两条,没有删掉一条划得来。
#include<cstdio> #include<cstring> #include<algorithm> #include<string> #include<iostream> #include<queue> #include<map> #include<cmath> #include<vector> using namespace std; typedef pair<int,int> pii; const int MAXN=110; const int MAXM=5010; const int MAXNODE=4*MAXN; const int LOGMAXN=50; const int INF=0x3f3f3f3f; int T,N,M; int mst[MAXN][MAXN],maxe[MAXN][MAXN],pa[MAXN]; vector<int> G[MAXN],C[MAXN],node; int find(int x){ return x==pa[x]?x:pa[x]=find(pa[x]); } struct Edge{ int u,v,d; bool operator < (const Edge& rhs) const{ return d<rhs.d; } }e[MAXM]; int MST(){ sort(e,e+M); memset(mst,0,sizeof(mst)); for(int i=0;i<=N;i++){ pa[i]=i; G[i].clear(); C[i].clear(); } int cnt=0,ret=0; for(int i=0;i<M;i++){ int x=find(e[i].u),y=find(e[i].v); if(x!=y){ pa[x]=y; G[e[i].u].push_back(e[i].v); C[e[i].u].push_back(e[i].d); G[e[i].v].push_back(e[i].u); C[e[i].v].push_back(e[i].d); mst[e[i].u][e[i].v]=mst[e[i].v][e[i].u]=1; cnt++; ret+=e[i].d; } if(cnt==N-1) return ret; } return -1; } void DFS(int u,int fa,int d){ int len=node.size(); for(int i=0;i<len;i++){ int v=node[i]; maxe[u][v]=maxe[v][u]=max(maxe[v][fa],d); } len=G[u].size(); node.push_back(u); for(int i=0;i<len;i++){ int v=G[u][i]; if(v!=fa) DFS(v,u,C[u][i]); } } int main(){ freopen("in.txt","r",stdin); scanf("%d",&T); while(T--){ scanf("%d%d",&N,&M); int u,v,d; for(int i=0;i<M;i++) scanf("%d%d%d",&e[i].u,&e[i].v,&e[i].d); int ans1=MST(); node.clear(); memset(maxe,-1,sizeof(maxe)); DFS(1,-1,0); int ans2=INF; for(int i=0;i<M;i++) if(!mst[e[i].u][e[i].v]){ ans2=min(ans2,ans1+e[i].d-maxe[e[i].u][e[i].v]); } printf("%d %d\n",ans1,ans2); } return 0; }