转:点击打开链接
// BlockSampleTests.m #import <SenTestingKit/SenTestingKit.h> static int global = 100; static volatile BOOL flag = NO; static const int Length = 100; static int data[Length]; static void initData() { for(int i = 0; i < Length; i++){ data[i] = i + 1; } } @interface BlockSampleTests : SenTestCase @end @implementation BlockSampleTests - (void)setUp { [super setUp]; // Put setup code here; it will be run once, before the first test case. } - (void)tearDown { // Put teardown code here; it will be run once, after the last test case. [super tearDown]; } - (void)test1 { // 默认打印一条语句"Hello, World!" NSLog(@"Hello, World!"); } - (void)testBlock1 { // block 打印一条语句"Hello, World!" void (^aBlock)(void) = ^(void){ NSLog(@"Hello, World!"); }; aBlock(); } - (void)testBlock2 { // block 打印一条语句"Hello, World!" void (^aBlock)(void) = 0; aBlock = ^(void) { NSLog(@"Hello, World!"); }; aBlock(); } - (void)testBlockArray { // block 数组 void (^blocks[2])(void) = { ^(void){ NSLog(@" >> This is block 1!"); }, ^(void){ NSLog(@" >> This is block 2!"); } }; blocks[0](); blocks[1](); } - (void)testBlock4 { /* block 是分配在 stack 上的,这意味着我们必须小心里处理 block 的生命周期。 比如如下的做法是不对的,因为 stack 分配的 block 在 if 或 else 内是有效的,但是到大括号 } 退出时就可能无效了: */ dispatch_block_t block; BOOL x = 1; if (x) { block = ^{ printf("true\n"); }; } else { block = ^{ printf("false\n"); }; } block(); } - (void)testBlock5 { /* 考虑到 block 的目的是为了支持并行编程,对于普通的 local 变量,我们就不能在 block 里面随意修改(原因很简单,block 可以被多个线程并行运行,会有问题的) 而且如果你在 block 中修改普通的 local 变量,编译器也会报错。 那么该如何修改外部变量呢?有两种办法: 第一种是可以修改 static 全局变量; 第二种是可以修改用新关键字 __block 修饰的变量。 */ __block int blockLocal = 100; static int staticLocal = 100; void (^aBlock)(void) = ^(void){ NSLog(@" >> Sum: %d\n", global + staticLocal); global++; blockLocal++; staticLocal++; }; aBlock(); NSLog(@"After modified, global: %d, block local: %d, static local: %d\n", global, blockLocal, staticLocal); } - (void)testBlock6 { /* 我们也可以引用 static block 或 __block block。比如我们可以用他们来实现 block 递归 */ // 1 void (^aBlock)(int) = 0; static void (^ const staticBlock)(int) = ^(int i) { if (i > 0) { NSLog(@" >> static %d", i); staticBlock(i - 1); } }; aBlock = staticBlock; aBlock(5); // 2 __block void (^blockBlock)(int); blockBlock = ^(int i) { if (i > 0) { NSLog(@" >> block %d", i); blockBlock(i - 1); } }; blockBlock(5); } - (void)testBlock7 { /* 上面我们介绍了 block 及其基本用法,但还没有涉及并行编程。 block 与 Dispatch Queue 分发队列结合起来使用,是 iOS 中并行编程的利器。 */ // create dispatch queue dispatch_queue_t queue = dispatch_queue_create("StudyBlocks", NULL); dispatch_async(queue, ^(void) { int sum = 0; for(int i = 0; i < Length; i++) { sum += data[i]; } NSLog(@" >> Sum: %d", sum); flag = YES; }); // wait util work is done. while (!flag); dispatch_release(queue); } - (void)testBlock8 { /* 在上面的例子中,我们的主线程一直在轮询 flag 以便知晓 block 线程是否执行完毕,这样做的效率是很低的,严重浪费 CPU 资源。 我们可以使用一些通信机制来解决这个问题,如:semaphore(信号量)。 semaphore 的原理很简单,就是生产-消费模式,必须生产一些资源才能消费,没有资源的时候,那我就啥也不干,直到资源就绪。 */ initData(); // Create a semaphore with 0 resource __block dispatch_semaphore_t sem = dispatch_semaphore_create(0); // create dispatch semaphore dispatch_queue_t queue = dispatch_queue_create("StudyBlocks", NULL); dispatch_async(queue, ^(void) { int sum = 0; for(int i = 0; i < Length; i++){ sum += data[i]; } NSLog(@" >> Sum: %d", sum); // signal the semaphore: add 1 resource dispatch_semaphore_signal(sem); }); // wait for the semaphore: wait until resource is ready. dispatch_semaphore_wait(sem, DISPATCH_TIME_FOREVER); dispatch_release(sem); dispatch_release(queue); } - (void)testBlock9 { /* 下面我们来看一个按照 FIFO 顺序执行并用 semaphore 同步的例子:先将数组求和再依次减去数组。 */ initData(); __block int sum = 0; // Create a semaphore with 0 resource __block dispatch_semaphore_t sem = dispatch_semaphore_create(0); __block dispatch_semaphore_t taskSem = dispatch_semaphore_create(0); // create dispatch semaphore dispatch_queue_t queue = dispatch_queue_create("StudyBlocks", NULL); dispatch_block_t task1 = ^(void) { int s = 0; for (int i = 0; i < Length; i++) { s += data[i]; } sum = s; NSLog(@" >> after add: %d", sum); dispatch_semaphore_signal(taskSem); }; dispatch_block_t task2 = ^(void) { dispatch_semaphore_wait(taskSem, DISPATCH_TIME_FOREVER); int s = sum; for (int i = 0; i < Length; i++) { s -= data[i]; } sum = s; NSLog(@" >> after subtract: %d", sum); dispatch_semaphore_signal(sem); }; dispatch_async(queue, task1); dispatch_async(queue, task2); // wait for the semaphore: wait until resource is ready. dispatch_semaphore_wait(sem, DISPATCH_TIME_FOREVER); dispatch_release(taskSem); dispatch_release(sem); dispatch_release(queue); /* 在上面的代码中,我们利用了 dispatch_queue 的 FIFO 特性, 确保 task1 先于 task2 执行,而 task2 必须等待直到 task1 执行完毕才开始干正事,主线程又必须等待 task2 才能干正事。 这样我们就可以保证先求和,再相减,然后再让主线程运行结束这个顺序。 */ } - (void)testBlock10 { /* 使用 dispatch_apply 进行并发迭代: 对于上面的求和操作,我们也可以使用 dispatch_apply 来简化代码的编写: */ initData(); dispatch_queue_t queue = dispatch_get_global_queue(DISPATCH_QUEUE_PRIORITY_DEFAULT, 0); __block int sum = 0; __block int *pArray = data; // iterations dispatch_apply(Length, queue, ^(size_t i) { sum += pArray[i]; }); NSLog(@" >> sum: %d", sum); dispatch_release(queue); /* 注意这里使用了全局 dispatch_queue。 dispatch_apply 的定义如下: dispatch_apply(size_t iterations, dispatch_queue_t queue, void (^block)(size_t)); 参数 iterations 表示迭代的次数,void (^block)(size_t) 是 block 循环体。这么做与 for 循环相比有什么好处呢? 答案是:并行,这里的求和是并行的,并不是按照顺序依次执行求和的。 */ } - (void)testBlock11 { /* 我们可以将完成一组相关任务的 block 添加到一个 dispatch group 中去,这样可以在 group 中所有 block 任务都完成之后,再做其他事情。 比如 testBlock9 中的示例也可以使用 dispatch group 实现 */ initData(); __block int sum = 0; // Create a semaphore with 0 resource __block dispatch_semaphore_t taskSem = dispatch_semaphore_create(0); // create dispatch semaphore dispatch_group_t group = dispatch_group_create(); dispatch_queue_t queue = dispatch_queue_create("StudyBlocks", NULL); dispatch_block_t task1 = ^(void) { int s = 0; for (int i = 0; i < Length; i++) { s += data[i]; } sum = s; NSLog(@" >> after add: %d", sum); dispatch_semaphore_signal(taskSem); }; dispatch_block_t task2 = ^(void) { dispatch_semaphore_wait(taskSem, DISPATCH_TIME_FOREVER); int s = sum; for (int i = 0; i < Length; i++) { s -= data[i]; } sum = s; NSLog(@" >> after subtract: %d", sum); }; // Fork dispatch_group_async(group, queue, task1); dispatch_group_async(group, queue, task2); // Join dispatch_group_wait(group, DISPATCH_TIME_FOREVER); dispatch_release(taskSem); dispatch_release(queue); dispatch_release(group); } - (void)testBlock12 { /* “带有自动变量值”在block中表现为“截获自动变量” 即保存自动变量的值 所以在执行block语法后,即使改写block中使用的自动变量的值也不会影响block执行时自动变量的值 该源码就在block语法后改写了block中自动变量val和fmt 但执行结果是: val = 10 */ int val = 10; const char *fmt = "val = %d\n"; void (^blk)(void) = ^{printf(fmt, val);}; val = 2; fmt = "These values were changed. val = %d\n"; blk(); // 执行结果是:val = 10 } - (void)testBlock13 { // 虽然我们把Block Objects 异步分派到了串行队列上,这个还是按照FIFO原则执行它的代码 __block dispatch_semaphore_t sem1 = dispatch_semaphore_create(0); __block dispatch_semaphore_t sem2 = dispatch_semaphore_create(0); __block dispatch_semaphore_t sem3 = dispatch_semaphore_create(0); dispatch_queue_t firstSerialQueue = dispatch_queue_create("com.launch.GCD.serialQueue1", 0); dispatch_async(firstSerialQueue, ^{ NSUInteger counter = 0; for (counter=0; counter<5; counter++) { NSLog(@"First interation, counter=%d", counter); } dispatch_semaphore_signal(sem1); }); dispatch_async(firstSerialQueue, ^{ NSUInteger counter = 0; for (counter=0; counter<5; counter++) { NSLog(@"Second interation, counter=%d", counter); } dispatch_semaphore_signal(sem2); }); dispatch_async(firstSerialQueue, ^{ NSUInteger counter = 0; for (counter=0; counter<5; counter++) { NSLog(@"Third interation, counter=%d", counter); } dispatch_semaphore_signal(sem3); }); dispatch_semaphore_wait(sem1, DISPATCH_TIME_FOREVER); dispatch_semaphore_wait(sem2, DISPATCH_TIME_FOREVER); dispatch_semaphore_wait(sem3, DISPATCH_TIME_FOREVER); dispatch_release(firstSerialQueue); dispatch_release(sem1); dispatch_release(sem2); dispatch_release(sem3); } - (void)testBlock14{ // 虽然我们把Block Objects 异步分派到了串行队列上,这个还是按照FIFO原则执行它的代码 // 但是我们可以创建多个串行队列,不同串行队列之间是并行的 __block dispatch_semaphore_t sem1 = dispatch_semaphore_create(0); __block dispatch_semaphore_t sem2 = dispatch_semaphore_create(0); __block dispatch_semaphore_t sem3 = dispatch_semaphore_create(0); dispatch_queue_t firstSerialQueue1 = dispatch_queue_create("com.launch.GCD.serialQueue1", 0); dispatch_queue_t firstSerialQueue2 = dispatch_queue_create("com.launch.GCD.serialQueue2", 0); dispatch_queue_t firstSerialQueue3 = dispatch_queue_create("com.launch.GCD.serialQueue3", 0); dispatch_async(firstSerialQueue1, ^{ NSUInteger counter = 0; for (counter=0; counter<5; counter++) { NSLog(@"First interation, counter=%d", counter); } dispatch_semaphore_signal(sem1); }); dispatch_async(firstSerialQueue2, ^{ NSUInteger counter = 0; for (counter=0; counter<5; counter++) { NSLog(@"Second interation, counter=%d", counter); } dispatch_semaphore_signal(sem2); }); dispatch_async(firstSerialQueue3, ^{ NSUInteger counter = 0; for (counter=0; counter<5; counter++) { NSLog(@"Third interation, counter=%d", counter); } dispatch_semaphore_signal(sem3); }); dispatch_semaphore_wait(sem1, DISPATCH_TIME_FOREVER); dispatch_semaphore_wait(sem2, DISPATCH_TIME_FOREVER); dispatch_semaphore_wait(sem3, DISPATCH_TIME_FOREVER); dispatch_release(firstSerialQueue1); dispatch_release(firstSerialQueue2); dispatch_release(firstSerialQueue3); dispatch_release(sem1); dispatch_release(sem2); dispatch_release(sem3); } static dispatch_once_t onceToken; void (^executedOnlyOnce)(void) = ^{ static NSUInteger numberOfEntries = 0; numberOfEntries++; NSLog(@"Executed %d time(s)", numberOfEntries); }; - (void)testBlock15{ // 一个任务最多只执行一次 dispatch_queue_t concurrentQueue = dispatch_get_global_queue(DISPATCH_QUEUE_PRIORITY_DEFAULT, 0); dispatch_once(&onceToken, ^{ dispatch_async(concurrentQueue, executedOnlyOnce); }); dispatch_once(&onceToken, ^{ dispatch_async(concurrentQueue, executedOnlyOnce); }); // 稍缓线程退出 NSUInteger count= 0; while (count++ < 3) { sleep(1); } } - (void)testBlock16{ // 利用dispatch_once实现单例 /* @interface SingletonSample : NSObject + (id)ShareInstance; @end @implementation SingletonSample + (id)ShareInstance{ static SingletonSample *SharedInstance = nil; static dispatch_once_t onceToken; dispatch_once(&onceToken, ^{ SharedInstance = [[SingletonSample alloc] init]; }); return SharedInstance; } @end */ SingletonSample *obj1 = [SingletonSample ShareInstance]; SingletonSample *obj2 = [SingletonSample ShareInstance]; NSLog(@"obj1=%@, obj2=%@", obj1, obj2); STAssertEquals(obj1, obj2, nil); } - (void)testBlock17{ // 利用GCD延时后执行任务 double delayInsenconds = 2.0; dispatch_time_t delayInNanoSeconds = dispatch_time(DISPATCH_TIME_NOW, delayInsenconds * NSEC_PER_SEC); dispatch_queue_t concurrentQueue = dispatch_get_global_queue(DISPATCH_QUEUE_PRIORITY_DEFAULT, 0); NSLog(@"testBlock17"); dispatch_after(delayInNanoSeconds, concurrentQueue, ^(void){ NSLog(@"Now do work in dispatch_after"); }); // 稍缓线程退出 NSUInteger count= 0; while (count++ < 5) { sleep(1); } } @end