本文是对pandas的一个入门介绍,仅仅针对初学者。如果需要更详细的内容,请移步Cookbook.
首先,导入所需要的python包:
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
创建对象
pandas中的数据结构包括Series、DataFrame、Panel、Pannel4D等,详细介绍移步数据结构介绍.
常用的数据结构是前两个:Series和DataFrame。
通过传入一个已有的python列表(list)对象来创建一个Series对象。
s = pd.Series([1,3,4,np.nan,6,8])
s
0 1.0
1 3.0
2 4.0
3 NaN
4 6.0
5 8.0
dtype: float64
通过传入一个numpy数组来构建一个DataFrame对象。使用时间序列作为每行的索引,并为每列数据分配一个列名。
dates = pd.date_range('20130101', periods=6)
dates
DatetimeIndex(['2013-01-01', '2013-01-02', '2013-01-03', '2013-01-04',
'2013-01-05', '2013-01-06'],
dtype='datetime64[ns]', freq='D')
df = pd.DataFrame(np.random.randn(6,4), index=dates, columns=list('ABCD'))
df
|
A |
B |
C |
D |
2013-01-01 |
-0.285894 |
0.490011 |
0.171121 |
-1.549807 |
2013-01-02 |
-0.068377 |
-0.452804 |
-0.391892 |
-0.852520 |
2013-01-03 |
1.304388 |
-1.808484 |
-0.286489 |
-0.437457 |
2013-01-04 |
1.447812 |
-1.862121 |
0.115950 |
-0.664134 |
2013-01-05 |
0.520409 |
-1.402740 |
-0.356049 |
0.460950 |
2013-01-06 |
-0.404900 |
0.585420 |
-0.073923 |
-0.501197 |
通过传入一个python字典对象来创建一个DataFrame对象。
df2 = pd.DataFrame({'A': 1.,
'B': pd.Timestamp('20160102'),
'C': pd.Series(1,index=list(range(4)),dtype='float32'),
'D': np.array([3]*4, dtype='int32'),
'E': pd.Categorical(['test','train','test','train']),
'F': 'foo'})
df2
|
A |
B |
C |
D |
E |
F |
0 |
1.0 |
2016-01-02 |
1.0 |
3 |
test |
foo |
1 |
1.0 |
2016-01-02 |
1.0 |
3 |
train |
foo |
2 |
1.0 |
2016-01-02 |
1.0 |
3 |
test |
foo |
3 |
1.0 |
2016-01-02 |
1.0 |
3 |
train |
foo |
df2.dtypes
A float64 B datetime64[ns] C float32 D int32 E category F object dtype: object 在ipython中可以使用“Tab”键对DataFrame的列名和公共属性进行自动补全。
查看对象中的数据
查看DataFrame的前几行或最后几行
df.head()
|
A |
B |
C |
D |
2013-01-01 |
-0.285894 |
0.490011 |
0.171121 |
-1.549807 |
2013-01-02 |
-0.068377 |
-0.452804 |
-0.391892 |
-0.852520 |
2013-01-03 |
1.304388 |
-1.808484 |
-0.286489 |
-0.437457 |
2013-01-04 |
1.447812 |
-1.862121 |
0.115950 |
-0.664134 |
2013-01-05 |
0.520409 |
-1.402740 |
-0.356049 |
0.460950 |
df.tail()
|
A |
B |
C |
D |
2013-01-02 |
-0.068377 |
-0.452804 |
-0.391892 |
-0.852520 |
2013-01-03 |
1.304388 |
-1.808484 |
-0.286489 |
-0.437457 |
2013-01-04 |
1.447812 |
-1.862121 |
0.115950 |
-0.664134 |
2013-01-05 |
0.520409 |
-1.402740 |
-0.356049 |
0.460950 |
2013-01-06 |
-0.404900 |
0.585420 |
-0.073923 |
-0.501197 |
df.head(3)
|
A |
B |
C |
D |
2013-01-01 |
-0.285894 |
0.490011 |
0.171121 |
-1.549807 |
2013-01-02 |
-0.068377 |
-0.452804 |
-0.391892 |
-0.852520 |
2013-01-03 |
1.304388 |
-1.808484 |
-0.286489 |
-0.437457 |
获取DataFrame的索引、列名、数据(值)。
df.index
DatetimeIndex([‘2013-01-01’, ‘2013-01-02’, ‘2013-01-03’, ‘2013-01-04’, ‘2013-01-05’, ‘2013-01-06’], dtype=’datetime64[ns]’, freq=’D’)
df.columns
Index([u’A’, u’B’, u’C’, u’D’], dtype=’object’)
df.values
array([[-0.28589413, 0.49001051, 0.17112101, -1.54980655], [-0.06837701, -0.45280422, -0.39189213, -0.85252018], [ 1.30438846, -1.80848416, -0.28648908, -0.43745725], [ 1.44781215, -1.86212061, 0.11594994, -0.66413402], [ 0.5204089 , -1.4027399 , -0.35604882, 0.4609499 ], [-0.40489995, 0.58541997, -0.07392295, -0.5011969 ]]) 使用“describe”获取数据的统计信息。
df.describe()
|
A |
B |
C |
D |
count |
6.000000 |
6.000000 |
6.000000 |
6.000000 |
mean |
0.418906 |
-0.741786 |
-0.136880 |
-0.590694 |
std |
0.808192 |
1.112849 |
0.244213 |
0.652884 |
min |
-0.404900 |
-1.862121 |
-0.391892 |
-1.549807 |
25% |
-0.231515 |
-1.707048 |
-0.338659 |
-0.805424 |
50% |
0.226016 |
-0.927772 |
-0.180206 |
-0.582665 |
75% |
1.108394 |
0.254307 |
0.068482 |
-0.453392 |
max |
1.447812 |
0.585420 |
0.171121 |
0.460950 |
将DataFrame进行转置。
df.T
|
2013-01-01 00:00:00 |
2013-01-02 00:00:00 |
2013-01-03 00:00:00 |
2013-01-04 00:00:00 |
2013-01-05 00:00:00 |
2013-01-06 00:00:00 |
A |
-0.285894 |
-0.068377 |
1.304388 |
1.447812 |
0.520409 |
-0.404900 |
B |
0.490011 |
-0.452804 |
-1.808484 |
-1.862121 |
-1.402740 |
0.585420 |
C |
0.171121 |
-0.391892 |
-0.286489 |
0.115950 |
-0.356049 |
-0.073923 |
D |
-1.549807 |
-0.852520 |
-0.437457 |
-0.664134 |
0.460950 |
-0.501197 |
df
|
A |
B |
C |
D |
2013-01-01 |
-0.285894 |
0.490011 |
0.171121 |
-1.549807 |
2013-01-02 |
-0.068377 |
-0.452804 |
-0.391892 |
-0.852520 |
2013-01-03 |
1.304388 |
-1.808484 |
-0.286489 |
-0.437457 |
2013-01-04 |
1.447812 |
-1.862121 |
0.115950 |
-0.664134 |
2013-01-05 |
0.520409 |
-1.402740 |
-0.356049 |
0.460950 |
2013-01-06 |
-0.404900 |
0.585420 |
-0.073923 |
-0.501197 |
对坐标轴进行排序。
df.sort_index(axis=1, ascending=False)
|
D |
C |
B |
A |
2013-01-01 |
-1.549807 |
0.171121 |
0.490011 |
-0.285894 |
2013-01-02 |
-0.852520 |
-0.391892 |
-0.452804 |
-0.068377 |
2013-01-03 |
-0.437457 |
-0.286489 |
-1.808484 |
1.304388 |
2013-01-04 |
-0.664134 |
0.115950 |
-1.862121 |
1.447812 |
2013-01-05 |
0.460950 |
-0.356049 |
-1.402740 |
0.520409 |
2013-01-06 |
-0.501197 |
-0.073923 |
0.585420 |
-0.404900 |
df.sort_index(axis=0, ascending=False)
|
A |
B |
C |
D |
2013-01-06 |
-0.404900 |
0.585420 |
-0.073923 |
-0.501197 |
2013-01-05 |
0.520409 |
-1.402740 |
-0.356049 |
0.460950 |
2013-01-04 |
1.447812 |
-1.862121 |
0.115950 |
-0.664134 |
2013-01-03 |
1.304388 |
-1.808484 |
-0.286489 |
-0.437457 |
2013-01-02 |
-0.068377 |
-0.452804 |
-0.391892 |
-0.852520 |
2013-01-01 |
-0.285894 |
0.490011 |
0.171121 |
-1.549807 |
对值进行排序。
df.sort_values(by='B')
|
A |
B |
C |
D |
2013-01-04 |
1.447812 |
-1.862121 |
0.115950 |
-0.664134 |
2013-01-03 |
1.304388 |
-1.808484 |
-0.286489 |
-0.437457 |
2013-01-05 |
0.520409 |
-1.402740 |
-0.356049 |
0.460950 |
2013-01-02 |
-0.068377 |
-0.452804 |
-0.391892 |
-0.852520 |
2013-01-01 |
-0.285894 |
0.490011 |
0.171121 |
-1.549807 |
2013-01-06 |
-0.404900 |
0.585420 |
-0.073923 |
-0.501197 |
df.sort_values(by='B',ascending=False)
|
A |
B |
C |
D |
2013-01-06 |
-0.404900 |
0.585420 |
-0.073923 |
-0.501197 |
2013-01-01 |
-0.285894 |
0.490011 |
0.171121 |
-1.549807 |
2013-01-02 |
-0.068377 |
-0.452804 |
-0.391892 |
-0.852520 |
2013-01-05 |
0.520409 |
-1.402740 |
-0.356049 |
0.460950 |
2013-01-03 |
1.304388 |
-1.808484 |
-0.286489 |
-0.437457 |
2013-01-04 |
1.447812 |
-1.862121 |
0.115950 |
-0.664134 |
选择数据
pandas中对数据的选择可以使用标准的python/numpy方式。
df['A']
2013-01-01 -0.285894 2013-01-02 -0.068377 2013-01-03 1.304388 2013-01-04 1.447812 2013-01-05 0.520409 2013-01-06 -0.404900 Freq: D, Name: A, dtype: float64
df.A
2013-01-01 -0.285894 2013-01-02 -0.068377 2013-01-03 1.304388 2013-01-04 1.447812 2013-01-05 0.520409 2013-01-06 -0.404900 Freq: D, Name: A, dtype: float64 对行进行切片操作。
df[0:3]
|
A |
B |
C |
D |
2013-01-01 |
-0.285894 |
0.490011 |
0.171121 |
-1.549807 |
2013-01-02 |
-0.068377 |
-0.452804 |
-0.391892 |
-0.852520 |
2013-01-03 |
1.304388 |
-1.808484 |
-0.286489 |
-0.437457 |
df['20130103':'20130105']
|
A |
B |
C |
D |
2013-01-03 |
1.304388 |
-1.808484 |
-0.286489 |
-0.437457 |
2013-01-04 |
1.447812 |
-1.862121 |
0.115950 |
-0.664134 |
2013-01-05 |
0.520409 |
-1.402740 |
-0.356049 |
0.460950 |
使用标准的python/numpy方法获取数据的方式很直观,但是对于工业级的代码,建议使用优化的pandas数据获取方法,包括:.at,.iat,.iloc和.ix
df
|
A |
B |
C |
D |
2013-01-01 |
-0.285894 |
0.490011 |
0.171121 |
-1.549807 |
2013-01-02 |
-0.068377 |
-0.452804 |
-0.391892 |
-0.852520 |
2013-01-03 |
1.304388 |
-1.808484 |
-0.286489 |
-0.437457 |
2013-01-04 |
1.447812 |
-1.862121 |
0.115950 |
-0.664134 |
2013-01-05 |
0.520409 |
-1.402740 |
-0.356049 |
0.460950 |
2013-01-06 |
-0.404900 |
0.585420 |
-0.073923 |
-0.501197 |
dates
DatetimeIndex([‘2013-01-01’, ‘2013-01-02’, ‘2013-01-03’, ‘2013-01-04’, ‘2013-01-05’, ‘2013-01-06’], dtype=’datetime64[ns]’, freq=’D’)
df.loc[dates[0]]
A -0.285894 B 0.490011 C 0.171121 D -1.549807 Name: 2013-01-01 00:00:00, dtype: float64 按类标选择多坐标轴的数据。
df.loc[:,['A','B']]
|
A |
B |
2013-01-01 |
-0.285894 |
0.490011 |
2013-01-02 |
-0.068377 |
-0.452804 |
2013-01-03 |
1.304388 |
-1.808484 |
2013-01-04 |
1.447812 |
-1.862121 |
2013-01-05 |
0.520409 |
-1.402740 |
2013-01-06 |
-0.404900 |
0.585420 |
df.loc['20130102':'20130104',['A','B']]
|
A |
B |
2013-01-02 |
-0.068377 |
-0.452804 |
2013-01-03 |
1.304388 |
-1.808484 |
2013-01-04 |
1.447812 |
-1.862121 |
df.loc['20130105',['A','B']]
A 0.520409 B -1.402740 Name: 2013-01-05 00:00:00, dtype: float64
df.loc['20130105','A']
0.52040890430486719
df.at[dates[0],'A']
-0.28589413005579967 按位置进行选择,传入整数,返回数据。
df
|
A |
B |
C |
D |
2013-01-01 |
-0.285894 |
0.490011 |
0.171121 |
-1.549807 |
2013-01-02 |
-0.068377 |
-0.452804 |
-0.391892 |
-0.852520 |
2013-01-03 |
1.304388 |
-1.808484 |
-0.286489 |
-0.437457 |
2013-01-04 |
1.447812 |
-1.862121 |
0.115950 |
-0.664134 |
2013-01-05 |
0.520409 |
-1.402740 |
-0.356049 |
0.460950 |
2013-01-06 |
-0.404900 |
0.585420 |
-0.073923 |
-0.501197 |
df.iloc[3]
A 1.447812 B -1.862121 C 0.115950 D -0.664134 Name: 2013-01-04 00:00:00, dtype: float64
df.iloc[3:5,0:2]
|
A |
B |
2013-01-04 |
1.447812 |
-1.862121 |
2013-01-05 |
0.520409 |
-1.402740 |
按整数位置进行数据选取或切片时,方法同python/numpy,从0开始索引,包含前端不含后端。
df.iloc[[1,2,4],[0,2]]
|
A |
C |
2013-01-02 |
-0.068377 |
-0.391892 |
2013-01-03 |
1.304388 |
-0.286489 |
2013-01-05 |
0.520409 |
-0.356049 |
df.iloc[1:3,:]
|
A |
B |
C |
D |
2013-01-02 |
-0.068377 |
-0.452804 |
-0.391892 |
-0.852520 |
2013-01-03 |
1.304388 |
-1.808484 |
-0.286489 |
-0.437457 |
df.iloc[:,1:3]
|
B |
C |
2013-01-01 |
0.490011 |
0.171121 |
2013-01-02 |
-0.452804 |
-0.391892 |
2013-01-03 |
-1.808484 |
-0.286489 |
2013-01-04 |
-1.862121 |
0.115950 |
2013-01-05 |
-1.402740 |
-0.356049 |
2013-01-06 |
0.585420 |
-0.073923 |
df.iloc[1,1]
-0.45280421688689004
df.iat[1,1]
-0.45280421688689004 使用布尔值进行索引。
df[df.A > 0]
|
A |
B |
C |
D |
2013-01-03 |
1.304388 |
-1.808484 |
-0.286489 |
-0.437457 |
2013-01-04 |
1.447812 |
-1.862121 |
0.115950 |
-0.664134 |
2013-01-05 |
0.520409 |
-1.402740 |
-0.356049 |
0.460950 |
df[df > 0]
|
A |
B |
C |
D |
2013-01-01 |
NaN |
0.490011 |
0.171121 |
NaN |
2013-01-02 |
NaN |
NaN |
NaN |
NaN |
2013-01-03 |
1.304388 |
NaN |
NaN |
NaN |
2013-01-04 |
1.447812 |
NaN |
0.115950 |
NaN |
2013-01-05 |
0.520409 |
NaN |
NaN |
0.46095 |
2013-01-06 |
NaN |
0.585420 |
NaN |
NaN |
使用isin()方法进行过滤。
df2 = df.copy()
df2['E'] = ['one','one','two','three','four','three']
df2
|
A |
B |
C |
D |
E |
2013-01-01 |
-0.285894 |
0.490011 |
0.171121 |
-1.549807 |
one |
2013-01-02 |
-0.068377 |
-0.452804 |
-0.391892 |
-0.852520 |
one |
2013-01-03 |
1.304388 |
-1.808484 |
-0.286489 |
-0.437457 |
two |
2013-01-04 |
1.447812 |
-1.862121 |
0.115950 |
-0.664134 |
three |
2013-01-05 |
0.520409 |
-1.402740 |
-0.356049 |
0.460950 |
four |
2013-01-06 |
-0.404900 |
0.585420 |
-0.073923 |
-0.501197 |
three |
df2[df2['E'].isin(['one','four'])]
|
A |
B |
C |
D |
E |
2013-01-01 |
-0.285894 |
0.490011 |
0.171121 |
-1.549807 |
one |
2013-01-02 |
-0.068377 |
-0.452804 |
-0.391892 |
-0.852520 |
one |
2013-01-05 |
0.520409 |
-1.402740 |
-0.356049 |
0.460950 |
four |
设置数据
设置一个新列,自动按索引分配数据。
s1 = pd.Series([1,2,3,4,5,6], index=pd.date_range('20130102',periods=6))
s1
2013-01-02 1 2013-01-03 2 2013-01-04 3 2013-01-05 4 2013-01-06 5 2013-01-07 6 Freq: D, dtype: int64
df['F'] = s1
df
|
A |
B |
C |
D |
F |
2013-01-01 |
-0.285894 |
0.490011 |
0.171121 |
-1.549807 |
NaN |
2013-01-02 |
-0.068377 |
-0.452804 |
-0.391892 |
-0.852520 |
1.0 |
2013-01-03 |
1.304388 |
-1.808484 |
-0.286489 |
-0.437457 |
2.0 |
2013-01-04 |
1.447812 |
-1.862121 |
0.115950 |
-0.664134 |
3.0 |
2013-01-05 |
0.520409 |
-1.402740 |
-0.356049 |
0.460950 |
4.0 |
2013-01-06 |
-0.404900 |
0.585420 |
-0.073923 |
-0.501197 |
5.0 |
因为s1是从‘20130102’开始的,所以‘20130101’对应的F列值为‘NaN’
df.at[dates[0],'A'] = 0
df
|
A |
B |
C |
D |
F |
2013-01-01 |
0.000000 |
0.490011 |
0.171121 |
-1.549807 |
NaN |
2013-01-02 |
-0.068377 |
-0.452804 |
-0.391892 |
-0.852520 |
1.0 |
2013-01-03 |
1.304388 |
-1.808484 |
-0.286489 |
-0.437457 |
2.0 |
2013-01-04 |
1.447812 |
-1.862121 |
0.115950 |
-0.664134 |
3.0 |
2013-01-05 |
0.520409 |
-1.402740 |
-0.356049 |
0.460950 |
4.0 |
2013-01-06 |
-0.404900 |
0.585420 |
-0.073923 |
-0.501197 |
5.0 |
df.iat[0,1] = 0
df.loc[:,'D'] = np.array([5] * len(df))
df
|
A |
B |
C |
D |
F |
2013-01-01 |
0.000000 |
0.000000 |
0.171121 |
5 |
NaN |
2013-01-02 |
-0.068377 |
-0.452804 |
-0.391892 |
5 |
1.0 |
2013-01-03 |
1.304388 |
-1.808484 |
-0.286489 |
5 |
2.0 |
2013-01-04 |
1.447812 |
-1.862121 |
0.115950 |
5 |
3.0 |
2013-01-05 |
0.520409 |
-1.402740 |
-0.356049 |
5 |
4.0 |
2013-01-06 |
-0.404900 |
0.585420 |
-0.073923 |
5 |
5.0 |
df2 = df.copy()
df2[df2 > 0] = -df2
df2
|
A |
B |
C |
D |
F |
2013-01-01 |
0.000000 |
0.000000 |
-0.171121 |
-5 |
NaN |
2013-01-02 |
-0.068377 |
-0.452804 |
-0.391892 |
-5 |
-1.0 |
2013-01-03 |
-1.304388 |
-1.808484 |
-0.286489 |
-5 |
-2.0 |
2013-01-04 |
-1.447812 |
-1.862121 |
-0.115950 |
-5 |
-3.0 |
2013-01-05 |
-0.520409 |
-1.402740 |
-0.356049 |
-5 |
-4.0 |
2013-01-06 |
-0.404900 |
-0.585420 |
-0.073923 |
-5 |
-5.0 |
缺失数据
pandas主要使用”np.nan“表示缺失数据,默认是不参与计算的。
“reindex”使我们可以对某个轴上的索引进行增删改操作。这种操作返回的是数据的一个备份。
df1 = df.reindex(index=dates[0:4], columns=list(df.columns)+['E'])
df1.loc[dates[0]:dates[1],'E'] = 1
df1
|
A |
B |
C |
D |
F |
E |
2013-01-01 |
0.000000 |
0.000000 |
0.171121 |
5 |
NaN |
1.0 |
2013-01-02 |
-0.068377 |
-0.452804 |
-0.391892 |
5 |
1.0 |
1.0 |
2013-01-03 |
1.304388 |
-1.808484 |
-0.286489 |
5 |
2.0 |
NaN |
2013-01-04 |
1.447812 |
-1.862121 |
0.115950 |
5 |
3.0 |
NaN |
df1.dropna(how='any')
|
A |
B |
C |
D |
F |
E |
2013-01-02 |
-0.068377 |
-0.452804 |
-0.391892 |
5 |
1.0 |
1.0 |
df1.fillna(value=5)
|
A |
B |
C |
D |
F |
E |
2013-01-01 |
0.000000 |
0.000000 |
0.171121 |
5 |
5.0 |
1.0 |
2013-01-02 |
-0.068377 |
-0.452804 |
-0.391892 |
5 |
1.0 |
1.0 |
2013-01-03 |
1.304388 |
-1.808484 |
-0.286489 |
5 |
2.0 |
5.0 |
2013-01-04 |
1.447812 |
-1.862121 |
0.115950 |
5 |
3.0 |
5.0 |
pd.isnull(df1)
|
A |
B |
C |
D |
F |
E |
2013-01-01 |
False |
False |
False |
False |
True |
False |
2013-01-02 |
False |
False |
False |
False |
False |
False |
2013-01-03 |
False |
False |
False |
False |
False |
True |
2013-01-04 |
False |
False |
False |
False |
False |
True |
df1
|
A |
B |
C |
D |
F |
E |
2013-01-01 |
0.000000 |
0.000000 |
0.171121 |
5 |
NaN |
1.0 |
2013-01-02 |
-0.068377 |
-0.452804 |
-0.391892 |
5 |
1.0 |
1.0 |
2013-01-03 |
1.304388 |
-1.808484 |
-0.286489 |
5 |
2.0 |
NaN |
2013-01-04 |
1.447812 |
-1.862121 |
0.115950 |
5 |
3.0 |
NaN |
运算
运算通常不含缺失值。
df
|
A |
B |
C |
D |
F |
2013-01-01 |
0.000000 |
0.000000 |
0.171121 |
5 |
NaN |
2013-01-02 |
-0.068377 |
-0.452804 |
-0.391892 |
5 |
1.0 |
2013-01-03 |
1.304388 |
-1.808484 |
-0.286489 |
5 |
2.0 |
2013-01-04 |
1.447812 |
-1.862121 |
0.115950 |
5 |
3.0 |
2013-01-05 |
0.520409 |
-1.402740 |
-0.356049 |
5 |
4.0 |
2013-01-06 |
-0.404900 |
0.585420 |
-0.073923 |
5 |
5.0 |
df.mean()
A 0.466555 B -0.823455 C -0.136880 D 5.000000 F 3.000000 dtype: float64
df.mean(1)
2013-01-01 1.292780 2013-01-02 1.017385 2013-01-03 1.241883 2013-01-04 1.540328 2013-01-05 1.552324 2013-01-06 2.021319 Freq: D, dtype: float64 在具有不同维度的对象之间进行运算时,需要进行对其。pandas会自动沿着特定维度进行扩展操作。
s = pd.Series([1,3,5,np.nan,6,8], index=dates)
s
2013-01-01 1.0 2013-01-02 3.0 2013-01-03 5.0 2013-01-04 NaN 2013-01-05 6.0 2013-01-06 8.0 Freq: D, dtype: float64
s = s.shift(2)
s
2013-01-01 NaN 2013-01-02 NaN 2013-01-03 1.0 2013-01-04 3.0 2013-01-05 5.0 2013-01-06 NaN Freq: D, dtype: float64
df
|
A |
B |
C |
D |
F |
2013-01-01 |
0.000000 |
0.000000 |
0.171121 |
5 |
NaN |
2013-01-02 |
-0.068377 |
-0.452804 |
-0.391892 |
5 |
1.0 |
2013-01-03 |
1.304388 |
-1.808484 |
-0.286489 |
5 |
2.0 |
2013-01-04 |
1.447812 |
-1.862121 |
0.115950 |
5 |
3.0 |
2013-01-05 |
0.520409 |
-1.402740 |
-0.356049 |
5 |
4.0 |
2013-01-06 |
-0.404900 |
0.585420 |
-0.073923 |
5 |
5.0 |
df.sub(s,axis='index')
|
A |
B |
C |
D |
F |
2013-01-01 |
NaN |
NaN |
NaN |
NaN |
NaN |
2013-01-02 |
NaN |
NaN |
NaN |
NaN |
NaN |
2013-01-03 |
0.304388 |
-2.808484 |
-1.286489 |
4.0 |
1.0 |
2013-01-04 |
-1.552188 |
-4.862121 |
-2.884050 |
2.0 |
0.0 |
2013-01-05 |
-4.479591 |
-6.402740 |
-5.356049 |
0.0 |
-1.0 |
2013-01-06 |
NaN |
NaN |
NaN |
NaN |
NaN |
sub()是减运算,df减去s时s的维度会自动进行扩展。
apply运算
apply运算将函数作用于数据。
df.apply(np.cumsum)
|
A |
B |
C |
D |
F |
2013-01-01 |
0.000000 |
0.000000 |
0.171121 |
5 |
NaN |
2013-01-02 |
-0.068377 |
-0.452804 |
-0.220771 |
10 |
1.0 |
2013-01-03 |
1.236011 |
-2.261288 |
-0.507260 |
15 |
3.0 |
2013-01-04 |
2.683824 |
-4.123409 |
-0.391310 |
20 |
6.0 |
2013-01-05 |
3.204233 |
-5.526149 |
-0.747359 |
25 |
10.0 |
2013-01-06 |
2.799333 |
-4.940729 |
-0.821282 |
30 |
15.0 |
df
|
A |
B |
C |
D |
F |
2013-01-01 |
0.000000 |
0.000000 |
0.171121 |
5 |
NaN |
2013-01-02 |
-0.068377 |
-0.452804 |
-0.391892 |
5 |
1.0 |
2013-01-03 |
1.304388 |
-1.808484 |
-0.286489 |
5 |
2.0 |
2013-01-04 |
1.447812 |
-1.862121 |
0.115950 |
5 |
3.0 |
2013-01-05 |
0.520409 |
-1.402740 |
-0.356049 |
5 |
4.0 |
2013-01-06 |
-0.404900 |
0.585420 |
-0.073923 |
5 |
5.0 |
np.cumsum是求元素累加和,上述操作将每行数据依次累加到下一行上。
df.apply(lambda x: x.max()-x.min())
A 1.852712 B 2.447541 C 0.563013 D 0.000000 F 4.000000 dtype: float64 柱状图 统计每个数据出现的次数。
s = pd.Series(np.random.randint(0,7,size=10))
s
0 1 1 5 2 0 3 4 4 3 5 5 6 6 7 6 8 5 9 1 dtype: int64
s.value_counts()
5 3 6 2 1 2 4 1 3 1 0 1 dtype: int64 字符串方法
s = pd.Series(['A','B','C','Aaba','Baca',np.nan, 'CABA', 'dog', 'cat'])
s.str.lower()
0 a 1 b 2 c 3 aaba 4 baca 5 NaN 6 caba 7 dog 8 cat dtype: object
数据融合
pandas提供了多种工具可以将Series、DataFrame和Panel对象按照多种逻辑结合起来。
使用concat()连接pandas对象
df = pd.DataFrame(np.random.randn(10,4))
df
|
0 |
1 |
2 |
3 |
0 |
0.526889 |
2.038465 |
-0.564220 |
0.263579 |
1 |
-0.987904 |
-0.306195 |
1.805246 |
0.030639 |
2 |
1.288416 |
-0.514634 |
0.450702 |
0.671194 |
3 |
0.209680 |
-0.868604 |
0.553508 |
0.173013 |
4 |
-0.443213 |
-0.998113 |
-0.237519 |
-0.401295 |
5 |
0.595207 |
0.845315 |
-0.914725 |
1.471180 |
6 |
-0.539326 |
-0.681776 |
0.491664 |
2.022497 |
7 |
1.083012 |
0.518738 |
0.707878 |
-0.337114 |
8 |
-1.322083 |
0.495178 |
-0.223462 |
-1.511751 |
9 |
-0.105515 |
-0.256568 |
1.591926 |
0.755486 |
pieces = [df[:3], df[3:7], df[7:]]
pieces
[ 0 1 2 3 0 0.526889 2.038465 -0.564220 0.263579 1 -0.987904 -0.306195 1.805246 0.030639 2 1.288416 -0.514634 0.450702 0.671194, 0 1 2 3 3 0.209680 -0.868604 0.553508 0.173013 4 -0.443213 -0.998113 -0.237519 -0.401295 5 0.595207 0.845315 -0.914725 1.471180 6 -0.539326 -0.681776 0.491664 2.022497, 0 1 2 3 7 1.083012 0.518738 0.707878 -0.337114 8 -1.322083 0.495178 -0.223462 -1.511751 9 -0.105515 -0.256568 1.591926 0.755486]
pd.concat(pieces)
|
0 |
1 |
2 |
3 |
0 |
0.526889 |
2.038465 |
-0.564220 |
0.263579 |
1 |
-0.987904 |
-0.306195 |
1.805246 |
0.030639 |
2 |
1.288416 |
-0.514634 |
0.450702 |
0.671194 |
3 |
0.209680 |
-0.868604 |
0.553508 |
0.173013 |
4 |
-0.443213 |
-0.998113 |
-0.237519 |
-0.401295 |
5 |
0.595207 |
0.845315 |
-0.914725 |
1.471180 |
6 |
-0.539326 |
-0.681776 |
0.491664 |
2.022497 |
7 |
1.083012 |
0.518738 |
0.707878 |
-0.337114 |
8 |
-1.322083 |
0.495178 |
-0.223462 |
-1.511751 |
9 |
-0.105515 |
-0.256568 |
1.591926 |
0.755486 |
join
SQL风格的数据融合。
left = pd.DataFrame({'key':['foo','foo'],'lval':[1,2]})
right = pd.DataFrame({'key': ['foo', 'foo'], 'rval': [4, 5]})
left
right
pd.merge(left, right, on='key')
|
key |
lval |
rval |
0 |
foo |
1 |
4 |
1 |
foo |
1 |
5 |
2 |
foo |
2 |
4 |
3 |
foo |
2 |
5 |
append
为dataframe增加行。
df = pd.DataFrame(np.random.randn(8,4), columns=['A','B','C','D'])
df
|
A |
B |
C |
D |
0 |
-0.346194 |
-1.878628 |
0.257169 |
0.445530 |
1 |
1.098394 |
-1.127943 |
-1.251522 |
-0.653498 |
2 |
1.296878 |
-0.757345 |
-2.423548 |
-2.233024 |
3 |
0.857649 |
-0.320409 |
0.267631 |
-1.337814 |
4 |
0.090567 |
1.460739 |
0.212409 |
-0.308281 |
5 |
0.951721 |
1.305034 |
0.721996 |
0.669566 |
6 |
0.104395 |
1.904366 |
-0.132059 |
0.436476 |
7 |
0.552328 |
-1.344539 |
0.459006 |
1.713434 |
s = df.iloc[3]
df.append(s, ignore_index=True)
|
A |
B |
C |
D |
0 |
-0.346194 |
-1.878628 |
0.257169 |
0.445530 |
1 |
1.098394 |
-1.127943 |
-1.251522 |
-0.653498 |
2 |
1.296878 |
-0.757345 |
-2.423548 |
-2.233024 |
3 |
0.857649 |
-0.320409 |
0.267631 |
-1.337814 |
4 |
0.090567 |
1.460739 |
0.212409 |
-0.308281 |
5 |
0.951721 |
1.305034 |
0.721996 |
0.669566 |
6 |
0.104395 |
1.904366 |
-0.132059 |
0.436476 |
7 |
0.552328 |
-1.344539 |
0.459006 |
1.713434 |
8 |
0.857649 |
-0.320409 |
0.267631 |
-1.337814 |
分组
“group by” 表示以下步骤中的一步或多步操作。
- 将数据按照某些标准分为多组
- 对每个组进行一个函数运算
- 将结果结合成一个数据结构
df = pd.DataFrame({'A' : ['foo', 'bar', 'foo', 'bar',
'foo', 'bar', 'foo', 'foo'],
'B' : ['one', 'one', 'two', 'three',
'two', 'two', 'one', 'three'],
'C' : np.random.randn(8),
'D' : np.random.randn(8)})
df
|
A |
B |
C |
D |
0 |
foo |
one |
0.460761 |
-0.001011 |
1 |
bar |
one |
2.001010 |
0.282712 |
2 |
foo |
two |
-1.171306 |
-0.085701 |
3 |
bar |
three |
0.723922 |
1.013934 |
4 |
foo |
two |
0.566774 |
-0.654899 |
5 |
bar |
two |
0.653483 |
1.013699 |
6 |
foo |
one |
0.072918 |
-0.590657 |
7 |
foo |
three |
-0.161579 |
-0.485670 |
df.groupby('A').sum()
|
C |
D |
A |
|
|
bar |
3.378415 |
2.310345 |
foo |
-0.232432 |
-1.817937 |
df.groupby(['A','B']).sum()
|
|
C |
D |
A |
B |
|
|
bar |
one |
2.001010 |
0.282712 |
three |
0.723922 |
1.013934 |
two |
0.653483 |
1.013699 |
foo |
one |
0.533679 |
-0.591667 |
three |
-0.161579 |
-0.485670 |
two |
-0.604532 |
-0.740600 |
Reshaping
stack
tuples = list(zip(*[['bar', 'bar', 'baz', 'baz',
'foo', 'foo', 'qux', 'qux'],
['one', 'two', 'one', 'two',
'one', 'two', 'one', 'two']]))
tuples
[(‘bar’, ‘one’), (‘bar’, ‘two’), (‘baz’, ‘one’), (‘baz’, ‘two’), (‘foo’, ‘one’), (‘foo’, ‘two’), (‘qux’, ‘one’), (‘qux’, ‘two’)]
index = pd.MultiIndex.from_tuples(tuples, names=['first', 'second'])
index
MultiIndex(levels=[[u’bar’, u’baz’, u’foo’, u’qux’], [u’one’, u’two’]], labels=[[0, 0, 1, 1, 2, 2, 3, 3], [0, 1, 0, 1, 0, 1, 0, 1]], names=[u’first’, u’second’])
df = pd.DataFrame(np.random.randn(8, 2), index=index, columns=['A', 'B'])
df
|
|
A |
B |
first |
second |
|
|
bar |
one |
0.055334 |
0.953745 |
two |
1.719361 |
0.419879 |
baz |
one |
0.180238 |
0.844578 |
two |
0.233350 |
-1.366278 |
foo |
one |
-0.285023 |
-0.353144 |
two |
-1.531769 |
-0.146243 |
qux |
one |
-0.419270 |
0.308597 |
two |
0.763019 |
0.631118 |
df2 = df[:4]
df2
|
|
A |
B |
first |
second |
|
|
bar |
one |
0.055334 |
0.953745 |
two |
1.719361 |
0.419879 |
baz |
one |
0.180238 |
0.844578 |
two |
0.233350 |
-1.366278 |
stacked = df2.stack()
stacked
first second bar one A 0.055334 B 0.953745 two A 1.719361 B 0.419879 baz one A 0.180238 B 0.844578 two A 0.233350 B -1.366278 dtype: float64 stack()方法将DataFrame的列压缩了一个级别 对于一个以MultiIndex为索引的stacked DataFrame或Series,stack()的逆操作是unstack().
stacked.unstack()
|
|
A |
B |
first |
second |
|
|
bar |
one |
0.055334 |
0.953745 |
two |
1.719361 |
0.419879 |
baz |
one |
0.180238 |
0.844578 |
two |
0.233350 |
-1.366278 |
stacked.unstack(0)
|
first |
bar |
baz |
second |
|
|
|
one |
A |
0.055334 |
0.180238 |
B |
0.953745 |
0.844578 |
two |
A |
1.719361 |
0.233350 |
B |
0.419879 |
-1.366278 |
stacked.unstack(1)
|
second |
one |
two |
first |
|
|
|
bar |
A |
0.055334 |
1.719361 |
B |
0.953745 |
0.419879 |
baz |
A |
0.180238 |
0.233350 |
B |
0.844578 |
-1.366278 |
数据透视表Pivot Tables
df = pd.DataFrame({'A' : ['one', 'one', 'two', 'three'] * 3,
'B' : ['A', 'B', 'C'] * 4,
'C' : ['foo', 'foo', 'foo', 'bar', 'bar', 'bar'] * 2,
'D' : np.random.randn(12),
'E' : np.random.randn(12)})
df
|
A |
B |
C |
D |
E |
0 |
one |
A |
foo |
0.353420 |
-0.570327 |
1 |
one |
B |
foo |
1.090713 |
-0.046794 |
2 |
two |
C |
foo |
-0.160874 |
0.595251 |
3 |
three |
A |
bar |
0.884684 |
-0.027981 |
4 |
one |
B |
bar |
0.379335 |
-0.387736 |
5 |
one |
C |
bar |
0.045674 |
1.210791 |
6 |
two |
A |
foo |
0.264520 |
-1.120149 |
7 |
three |
B |
foo |
1.149012 |
0.213768 |
8 |
one |
C |
foo |
-0.965242 |
-0.232711 |
9 |
one |
A |
bar |
-0.464023 |
0.799239 |
10 |
two |
B |
bar |
0.186186 |
-0.889300 |
11 |
three |
C |
bar |
0.177992 |
1.352036 |
pd.pivot_table(df, values='D', index=['A', 'B'], columns=['C'])
|
C |
bar |
foo |
A |
B |
|
|
one |
A |
-0.464023 |
0.353420 |
B |
0.379335 |
1.090713 |
C |
0.045674 |
-0.965242 |
three |
A |
0.884684 |
NaN |
B |
NaN |
1.149012 |
C |
0.177992 |
NaN |
two |
A |
NaN |
0.264520 |
B |
0.186186 |
NaN |
C |
NaN |
-0.160874 |
时间序列
pandas具有简单、强大、高效的用于频率变换的重采样操作(例如将季节性数据变为以5分钟为间隔的数据)。
rng = pd.date_range('1/1/2012', periods=100, freq='S')
ts = pd.Series(np.random.randint(0, 500, len(rng)), index=rng)
rng
DatetimeIndex([‘2012-01-01 00:00:00’, ‘2012-01-01 00:00:01’, ‘2012-01-01 00:00:02’, ‘2012-01-01 00:00:03’, ‘2012-01-01 00:00:04’, ‘2012-01-01 00:00:05’, ‘2012-01-01 00:00:06’, ‘2012-01-01 00:00:07’, ‘2012-01-01 00:00:08’, ‘2012-01-01 00:00:09’, ‘2012-01-01 00:00:10’, ‘2012-01-01 00:00:11’, ‘2012-01-01 00:00:12’, ‘2012-01-01 00:00:13’, ‘2012-01-01 00:00:14’, ‘2012-01-01 00:00:15’, ‘2012-01-01 00:00:16’, ‘2012-01-01 00:00:17’, ‘2012-01-01 00:00:18’, ‘2012-01-01 00:00:19’, ‘2012-01-01 00:00:20’, ‘2012-01-01 00:00:21’, ‘2012-01-01 00:00:22’, ‘2012-01-01 00:00:23’, ‘2012-01-01 00:00:24’, ‘2012-01-01 00:00:25’, ‘2012-01-01 00:00:26’, ‘2012-01-01 00:00:27’, ‘2012-01-01 00:00:28’, ‘2012-01-01 00:00:29’, ‘2012-01-01 00:00:30’, ‘2012-01-01 00:00:31’, ‘2012-01-01 00:00:32’, ‘2012-01-01 00:00:33’, ‘2012-01-01 00:00:34’, ‘2012-01-01 00:00:35’, ‘2012-01-01 00:00:36’, ‘2012-01-01 00:00:37’, ‘2012-01-01 00:00:38’, ‘2012-01-01 00:00:39’, ‘2012-01-01 00:00:40’, ‘2012-01-01 00:00:41’, ‘2012-01-01 00:00:42’, ‘2012-01-01 00:00:43’, ‘2012-01-01 00:00:44’, ‘2012-01-01 00:00:45’, ‘2012-01-01 00:00:46’, ‘2012-01-01 00:00:47’, ‘2012-01-01 00:00:48’, ‘2012-01-01 00:00:49’, ‘2012-01-01 00:00:50’, ‘2012-01-01 00:00:51’, ‘2012-01-01 00:00:52’, ‘2012-01-01 00:00:53’, ‘2012-01-01 00:00:54’, ‘2012-01-01 00:00:55’, ‘2012-01-01 00:00:56’, ‘2012-01-01 00:00:57’, ‘2012-01-01 00:00:58’, ‘2012-01-01 00:00:59’, ‘2012-01-01 00:01:00’, ‘2012-01-01 00:01:01’, ‘2012-01-01 00:01:02’, ‘2012-01-01 00:01:03’, ‘2012-01-01 00:01:04’, ‘2012-01-01 00:01:05’, ‘2012-01-01 00:01:06’, ‘2012-01-01 00:01:07’, ‘2012-01-01 00:01:08’, ‘2012-01-01 00:01:09’, ‘2012-01-01 00:01:10’, ‘2012-01-01 00:01:11’, ‘2012-01-01 00:01:12’, ‘2012-01-01 00:01:13’, ‘2012-01-01 00:01:14’, ‘2012-01-01 00:01:15’, ‘2012-01-01 00:01:16’, ‘2012-01-01 00:01:17’, ‘2012-01-01 00:01:18’, ‘2012-01-01 00:01:19’, ‘2012-01-01 00:01:20’, ‘2012-01-01 00:01:21’, ‘2012-01-01 00:01:22’, ‘2012-01-01 00:01:23’, ‘2012-01-01 00:01:24’, ‘2012-01-01 00:01:25’, ‘2012-01-01 00:01:26’, ‘2012-01-01 00:01:27’, ‘2012-01-01 00:01:28’, ‘2012-01-01 00:01:29’, ‘2012-01-01 00:01:30’, ‘2012-01-01 00:01:31’, ‘2012-01-01 00:01:32’, ‘2012-01-01 00:01:33’, ‘2012-01-01 00:01:34’, ‘2012-01-01 00:01:35’, ‘2012-01-01 00:01:36’, ‘2012-01-01 00:01:37’, ‘2012-01-01 00:01:38’, ‘2012-01-01 00:01:39’], dtype=’datetime64[ns]’, freq=’S’)
ts
2012-01-01 00:00:00 244 2012-01-01 00:00:01 57 2012-01-01 00:00:02 2 2012-01-01 00:00:03 175 2012-01-01 00:00:04 486 2012-01-01 00:00:05 71 2012-01-01 00:00:06 71 2012-01-01 00:00:07 430 2012-01-01 00:00:08 276 2012-01-01 00:00:09 283 2012-01-01 00:00:10 358 2012-01-01 00:00:11 465 2012-01-01 00:00:12 358 2012-01-01 00:00:13 20 2012-01-01 00:00:14 296 2012-01-01 00:00:15 397 2012-01-01 00:00:16 485 2012-01-01 00:00:17 358 2012-01-01 00:00:18 429 2012-01-01 00:00:19 148 2012-01-01 00:00:20 166 2012-01-01 00:00:21 333 2012-01-01 00:00:22 43 2012-01-01 00:00:23 352 2012-01-01 00:00:24 180 2012-01-01 00:00:25 79 2012-01-01 00:00:26 97 2012-01-01 00:00:27 344 2012-01-01 00:00:28 271 2012-01-01 00:00:29 434 … 2012-01-01 00:01:10 294 2012-01-01 00:01:11 22 2012-01-01 00:01:12 352 2012-01-01 00:01:13 383 2012-01-01 00:01:14 175 2012-01-01 00:01:15 62 2012-01-01 00:01:16 62 2012-01-01 00:01:17 32 2012-01-01 00:01:18 16 2012-01-01 00:01:19 110 2012-01-01 00:01:20 110 2012-01-01 00:01:21 302 2012-01-01 00:01:22 268 2012-01-01 00:01:23 342 2012-01-01 00:01:24 39 2012-01-01 00:01:25 346 2012-01-01 00:01:26 461 2012-01-01 00:01:27 305 2012-01-01 00:01:28 435 2012-01-01 00:01:29 370 2012-01-01 00:01:30 319 2012-01-01 00:01:31 376 2012-01-01 00:01:32 97 2012-01-01 00:01:33 437 2012-01-01 00:01:34 287 2012-01-01 00:01:35 335 2012-01-01 00:01:36 334 2012-01-01 00:01:37 106 2012-01-01 00:01:38 295 2012-01-01 00:01:39 122 Freq: S, dtype: int64
ts.resample('5Min').sum()
2012-01-01 24806 Freq: 5T, dtype: int64
rng = pd.date_range('3/6/2012 00:00', periods=5, freq='D')
ts = pd.Series(np.random.randn(len(rng)), rng)
ts
2012-03-06 0.954522 2012-03-07 0.944713 2012-03-08 1.299799 2012-03-09 1.766374 2012-03-10 -0.703189 Freq: D, dtype: float64
ts_utc = ts.tz_localize('UTC')
ts_utc
2012-03-06 00:00:00+00:00 0.954522 2012-03-07 00:00:00+00:00 0.944713 2012-03-08 00:00:00+00:00 1.299799 2012-03-09 00:00:00+00:00 1.766374 2012-03-10 00:00:00+00:00 -0.703189 Freq: D, dtype: float64
ts_utc.tz_convert('US/Eastern')
2012-03-05 19:00:00-05:00 0.954522 2012-03-06 19:00:00-05:00 0.944713 2012-03-07 19:00:00-05:00 1.299799 2012-03-08 19:00:00-05:00 1.766374 2012-03-09 19:00:00-05:00 -0.703189 Freq: D, dtype: float64
类别(Categoricals)
从0.15版本起,pandas可以在DataFrame中包含类别数据。
df = pd.DataFrame({"id":[1,2,3,4,5,6],
"raw_grade":['a', 'b', 'b', 'a', 'a', 'e']})
df["grade"] = df["raw_grade"].astype("category")
df["grade"]
0 a 1 b 2 b 3 a 4 a 5 e Name: grade, dtype: category Categories (3, object): [a, b, e]
df["grade"].cat.categories = ["very good", "good", "very bad"]
df
|
id |
raw_grade |
grade |
0 |
1 |
a |
very good |
1 |
2 |
b |
good |
2 |
3 |
b |
good |
3 |
4 |
a |
very good |
4 |
5 |
a |
very good |
5 |
6 |
e |
very bad |
df["grade"] = df["grade"].cat.set_categories(
["very bad", "bad", "medium", "good", "very good"])
df
|
id |
raw_grade |
grade |
0 |
1 |
a |
very good |
1 |
2 |
b |
good |
2 |
3 |
b |
good |
3 |
4 |
a |
very good |
4 |
5 |
a |
very good |
5 |
6 |
e |
very bad |
df.sort_values(by="grade")
|
id |
raw_grade |
grade |
5 |
6 |
e |
very bad |
1 |
2 |
b |
good |
2 |
3 |
b |
good |
0 |
1 |
a |
very good |
3 |
4 |
a |
very good |
4 |
5 |
a |
very good |
按类别对数据进行排序
df.groupby("grade").size()
grade
very bad 1
bad 0
medium 0
good 2
very good 3
dtype: int64
画图
ts = pd.Series(np.random.randn(1000),
index=pd.date_range('1/1/2000', periods=1000))
ts = ts.cumsum()
%matplotlib inline
ts.plot()
<matplotlib.axes._subplots.AxesSubplot at 0x7f7584dafc90>
df = pd.DataFrame(np.random.randn(1000, 4), index=ts.index,
columns=['A', 'B', 'C', 'D'])
df = df.cumsum()
plt.figure(); df.plot();
plt.legend(loc='best')
<matplotlib.legend.Legend at 0x7f7574834e50>
<matplotlib.figure.Figure at 0x7f7584daf310>
读取和保存数据
CSV:
df.to_csv(‘foo.csv’)
pd.read_csv(‘foo.csv’)
HDF5:
df.to_hdf(‘foo.h5’,’df’)
pd.read_hdf(‘foo.h5’,’df’)
Excel:
df.to_excel(‘foo.xlsx’, sheet_name=’Sheet1’)
pd.read_excel(‘foo.xlsx’, ‘Sheet1’, index_col=None, na_values=[‘NA’])
附录
本文是对pandas 0.18.1 documentation进行学习的一次学习记录。
原文见10 Minutes to pandas。虽然号称10分钟入门,但也只限于水过地皮湿的理解程度或作为手头的应急查阅文件。我在jupyter-notebook中一步一步按照代码敲下来,边学边理解大概需要四个小时。