Huffman树基本原理介绍

我们把每个字符看成一个结点,权值是字符的频率,每个字符开始都是一棵只有根结点的二叉树,如下图。

1.从集合里取出根结点权值最小的两棵树 I 和 J 组成新的二叉树 IJ,根结点权值为 1 + 1 = 2,将二叉树 IJ 加入集合,把 I 和 J 从集合里删除,如下图。

2.从集合里取出根结点权值最小的两棵树 H 和 G 组成新的二叉树 HG,根结点权值为 1 + 2 = 3,将二叉树 HG 加入集合,把 H 和 G 从集合里删除,如下图。

3.从集合里取出根结点权值最小的两棵树 E 和 F 组成新的二叉树 EF,根结点权值为 2 + 2 = 4,将二叉树 EF 加入集合,把 E 和 F 从集合里删除,如下图。

4.从集合里取出根结点权值最小的两棵树 IJ 和 D 组成新的二叉树 IJD,根结点权值为 2 + 3 = 5,将二叉树 IJD 加入集合,把 IJ 和 D 从集合里删除,如下图。

5.从集合里取出根结点权值最小的两棵树 GH 和 C 组成新的二叉树 GHC,根结点权值为 3 + 4 = 7,将二叉树 GHC 加入集合,把 GH 和 C 从集合里删除,如下图。

6.从集合里取出根结点权值最小的两棵树 EF 和 B 组成新的二叉树 EFB,根结点权值为 4 + 5 = 9,将二叉树 EFB 加入集合,把 EF 和 B 从集合里删除,如下图。

7.从集合里取出根结点权值最小的两棵树 IJD 和 A 组成新的二叉树 IJDA,根结点权值为 5 + 5 = 10,将二叉树 IJDA 加入集合,把 IJD 和 A 从集合里删除,如下图。

8.从集合里取出根结点权值最小的两棵树 EFB 和 GHC 组成新的二叉树 EFBGHC,根结点权值为 9 + 7 = 16,将二叉树 EFBGHC 加入集合,把 EFB 和 GHC 从集合里删除,如下图。

9.从集合里取出根结点权值最小的两棵树 EFBGHC 和 IJDA 组成新的二叉树 EFBGHCIJDA,根结点权值为 16 + 10 = 26,将二叉树 EFBGHCIJDA 加入集合,把 EFBGHC 和 IJDA 从集合里删除,如下图。

到这里我们发现集合里就剩一棵二叉树了,那么编码结束,最后这棵二叉树就是我们要得到的哈夫曼树。接下来我们规定非叶子结点的结点,到左子树的路径记为 0,到右子树的路径记为 1,如下图:

根结点到每个叶子结点的路径便是其对应字母的编码了,于是我们可以得到:

下面我们来算一下哈夫曼树的带权路径长度 WPL,也就是每个叶子到根的距离乘以叶子权值结果之和。

WPL = 5 * 2 + 5 * 3 + 4 * 3 + 3 * 3 + 2 * 4 + 2 * 4 + 2 * 4 + 1 * 4 + 1 * 4 + 1 * 4 = 82。

我们来算下如果直接存储字符串需要多少个比特,我们知道一个字符占一个字节,一个字节占 8 个比特,所以一共需要 8 * 26 = 208 个比特。我们再来看看哈夫曼编码需要多少个比特,我们可以发现 WPL 也就是编码后原来字符串所占的比特总长度 82。显然,哈夫曼编码把原数据压缩了好多,而且没有损失。

你可能感兴趣的:(Huffman)