- xwiki html和css,MediaWiki vs. XWiki
Ake阿科
多语言信息技术编程数据库操作系统
140Afar,Abkhazian,Afrikaans,Amharic,Arabic,Assamese,Aymara,Azerbaijani,Bashkir,Byelorussian,Bulgarian,Bihari,Bislama,Bengali;Bangla,Tibetan,Breton,Catalan,Corsican,Czech,Welsh,Danish,German,Bhutani,Gr
- n个节点的二叉树有多少种形态(Catalan数)
garrulousabyss
算法与数据结构基础
【n个节点的二叉树有多少种形态(Catalan数)】分析过程:(1)先考虑只有一个节点的情形,设此时的形态有f(1)种,那么很明显f(1)=1(2)如果有两个节点呢?我们很自然想到,应该在f(1)的基础上考虑递推关系。那么,如果固定一个节点后,左右子树的分布情况为1=1+0=0+1,故有f(2)=f(1)+f(1)(3)如果有三个节点,(我们需要考虑固定两个节点的情况么?当然不,因为当节点数量大于
- Catalan数
林小果1
数据结构与算法(java实现)算法java数据结构
文章目录Catalan数Leecode96不同的二叉搜索树题目描述解题思路代码Leecode22括号生成题目描述代码Catalan数Catalan数是一种组合数学的计数方法,常用于解决一些计数问题,例如括号匹配问题、二叉树的节点问题等。Catalan数的计算公式如下:C0=1,C1=1,C2=2,C3=5,C4=14,C5=42,C6=132,C7=429,C8=1430,C9=4862,C10=
- c语言程序设计卡特兰数问题,卡特兰数(Catalan)公式、证明、代码、典例
许小晴
c语言程序设计卡特兰数问题
大佬博客:传送门组合数公式:一、关于卡特兰数卡特兰数是一种经典的组合数,经常出现在各种计算中,其前几项为:1,2,5,14,42,132,429,1430,4862,16796,58786,208012,742900,2674440,9694845,35357670,129644790,477638700,1767263190,6564120420,24466267020,91482563640,
- 卡特兰数列编程实现
阿桑-
数据结构与算法
卡特兰(Catalan)数列典型特征有一类如下:1.可以分为两列2.每行从左向右依次递增(减),每列从上向下依次递增(减)/*2-10标准二维表问题问题为:设n是一个正整数。2*n的标准二维表是由正整数1,2,…2n组成的2*n数组,该数组的每行从左到右递增,每列从上到下递增。把数字从小到大进行排序,用0表示对应的数字在第一排,用1表示对应的数字在第二排,那么含有n个0,n个1的序列,就对应一种方
- 低配版catalan数(算法)(C语言)
兮于怀
卡特兰数:n个节点最多可组成多少个形态不同的二叉树?n节车厢出栈的可能排列方式有多少种?#includeintmain(){intn;scanf("%d",&n);longlongintt=1,j=2*n;longlonginta,b,i,s=1;for(i=1;i<=n;i++){t=t*j;j--;}for(i=1;i<=n;i++){s=s*i;}a=t/s;b=a/(n+1);printf
- C++实现——卡特兰数列及其应用
浪漫硅谷
algorithm卡特兰数列
/*卡特兰数列的原理及其应用场景令h(1)=1,catalan数满足递归式:h(n)=h(1)*h(n-1)+h(2)*h(n-2)+…+h(n-1)h(1)(其中n>=2)该递推关系的解为:h(n)=c(2n-2,n-1)/n(n=1,2,3,…)1,1,2,5,14,42,132,429,1430,4862,16796,58786,208012,742900,2674440,9694845,3
- C++卡特兰数
SkeletonKing233
C++算法卡特兰数
卡特兰数简介卡特兰数又称卡塔兰数,卡特兰数是组合数学中一个常出现在各种计数问题中的数列。以比利时的数学家欧仁·查理·卡塔兰(1814–1894)的名字来命名。但最早是欧拉在1753年解决凸包划分成三角形问题的时候,推出的Catalan数。初始值:f(0)=f(1)=1递推公式:f(n)=f(0)*f(n-1)+f(1)*f(n-2)+……+f(n-1)*f(0)解决的问题:括号化:P=a1×a2×
- C#,卡特兰数(Catalan number,明安图数)的算法源代码
深度混淆
C#算法演义AlgorithmRecipesC#卡塔兰数入门教程
一、概要卡特兰数(英语:Catalannumber),又称卡塔兰数、明安图数,是组合数学中一种常出现于各种计数问题中的数列。以比利时的数学家欧仁·查理·卡特兰的名字来命名。1730年左右被蒙古族数学家明安图使用于对三角函数幂级数的推导而首次发现,1774年被发表在《割圜密率捷法》。二、卡特兰数的历史1730年,中国清代蒙古族数学家明安图比卡特兰更早使用了卡特兰数,在发现三角函数幂级数的过程中,见《
- Catalan(卡特兰)数
丶lemon7
数据结构
二叉搜索树概念:介绍卡特兰数之前先来了解一些二叉搜索树的概念。比如有一棵树,它根节点比左边节点要大,比右边节点要小,这样的树就称为二叉搜索树。如下图所示:卡特兰数:我们把n个节点所能组成的不同二叉搜索树的个数称为卡特兰数(Catalan数)。接下来我们来看一下不同的卡特兰数是怎么计算出来的。卡特兰数分析:我们把C(n)记为卡特兰数,当节点数为1时,只能组成一种二叉搜索树,因此C(1)=1。C(2)
- leetcode 96+ leetcode 95
Ariana不会哭
leetcode96图片.png计算唯一二叉搜索树的个数:用到catalan公式:图片.png1n=121n=2/\1213321n=3\///\\321132//\\2123n=0时赋为1dp[2]=dp[0]*dp[1](1为根的情况)+dp[1]*dp[0](2为根的情况)同理可写出n=3的计算方法:dp[3]=dp[0]*dp[2](1为根的情况)+dp[1]*dp[1](2为根的情况)+
- Android多国语言翻译 国际化
iblade
国际化Android
语言目录详细对应关系Arabic,Egypt(ar-rEG)—————————–阿拉伯语,埃及Arabic,Israel(ar-rIL)——————————-阿拉伯语,以色列Bulgarian,Bulgaria(bg-rBG)———————保加利亚语,保加利亚Catalan,Spain(ca-rES)—————————加泰隆语,西班牙Czech,CzechRepublic(cs-rCZ)—————
- N个结点可构成多少不同的二叉树
rainyi2007
求职试题c
题目:树的形态时间限制1000ms,内存限制256000kB,代码长度限制8000B每行输入一个自然数n,对应输出两行,每行一个数字,分别是:节点为n的二叉树有____种。如果每个节点可能有红、黑两种颜色,有____种。输入示例:12输出示例:1228思路:此题即为Catalan数的应用之一:N个结点可以构成多少不同的二叉树。针对问题一,设N个结点可以构成f(N)个不同的二叉树,若左子树有M个结点
- 【论文复现】图像隐写常见问题
岁月漫长_
论文复现论文阅读
1.提取出错首先检查嵌入时的像素值是否越界(0-255),如果越界则在提取的时候无法正确提取嵌入的时候注意整数除法和浮点数除法向下取整结果不一样,floor(int(10)/16)=1,floor(double(10)/16)=02.常用代码部分1.生成随机二进制数%createandsavemsg**matlab**message=randi([0,1],1024,1);save'Catalan
- 寒假集训总结1-递推、递归
cqbzljt
学习总结c++递归算法
文章目录前言递推递归区别与联系递推递归的5种模型1.斐波那契数列(Fibonacci)例题-铺砖1题目描述输入格式输出格式样例输入样例输出2.汉诺塔(Hanoi)例题-汉诺塔问题题目描述输入格式输出格式样例输入样例输出3.平面分割4.卡塔兰数(Catalan)例题-编程社买书题目描述输入格式输出格式样例输入样例输出数据范围与提示5.第二类Stirling数例题1-合理放球题目描述输入格式输出格式样
- Catalan 数 和 Stirling 数
wniuniu_
离散数学算法java开发语言
这个也可以理解为栈,用(表示入栈,)表示出栈,任何情况下表示入栈的(都必须大于等于)的个数这个思路和入栈出栈的思路是等价的
- 【loli的胡策】NOIP训练10.5(组合数学+catalan数讲解)
wwyx2001
组合数学校内黑暗胡策试炼
吐槽:T1:以后考试要看准范围啊!只开了1e5炸了空间!!!T2:为什么不含ss的操作还会T啊,一删了那个操作就多分?评测机你给我出来?但这样依然避免不了被题解学弟踩T3:【题目描述】出个题就好了.这就是出题人没有写题目背景的原因.你在平面直角坐标系上.你一开始位于(0,0).每次可以在上/下/左/右四个方向中选一个走一步.即:从(x,y)走到(x,y+1),(x,y-1),(x-1,y),(x+
- LintCode 163 · Unique Binary Search Trees (DP 或 Catalan数)
纸上得来终觉浅 绝知此事要躬行
算法leetcode
163·UniqueBinarySearchTreesAlgorithmsMediumDescriptionGivenn,howmanystructurallyuniqueBSTs(binarysearchtrees)thatstorevalues1…n?Only$39.9forthe“TwitterCommentSystemProjectPractice”withinalimitedtimeof
- 一堆IKUN知识点
能踢球又能写代码的小恐龙
干货算法c++开发语言
(1)输出前n个catalan数:programjk;constmaxn=1000;typearraytype=array[0..maxn]oflongint;vari,j,n:longint;proceduremul(varh:arraytype;k:longint);vari:longint;beginfori:=0tomaxndoh[i]:=h[i]*k;fori:=0tomaxn-1dob
- 代码随想录算法训练营第四十一天| 343. 整数拆分 、 96.不同的二叉搜索树
夕风621
算法leetcode动态规划
343.整数拆分代码随想录视频讲解:动态规划,本题关键在于理解递推公式!|LeetCode:343.整数拆分_哔哩哔哩_bilibili96.不同的二叉搜索树代码随想录视屏讲解:动态规划找到子状态之间的关系很重要!|LeetCode:96.不同的二叉搜索树_哔哩哔哩_bilibili我的思路:Catalan数的模板,dp[i]=dp[0]*dp[i-1]+dp[1]*dp[i-2]+....+dp
- 在来到墨西哥前 我的坎坷(人生?)好像都是被欺负的
sakuranohin
在来到墨西哥前我是住在西班牙的在巴塞罗那的一个小镇叫mataro靠海(这边虽然也说西班牙语,但是他们基本不说,都说加泰罗尼亚语catalan)来说说来到西班牙前,故事很长(我每次去的居住国家都没雪[流眼泪])我是6岁去到那的,在那里上完了小学和初中。对于中国的记忆只有幼儿园还有小时候的家,可是2011年回过一次后就完全变样了!那是唯一次回国。幼儿园没了,三层楼变成7层楼了。而且还没电梯!每天上上下
- 9-数据结构-栈(C语言版)
奔心小韩
数据结构笔记(0基础)数据结构
数据结构-栈(C语言版)目录数据结构-栈(C语言版)1.栈的基础知识1.入栈,出栈的排列组合情景二:Catalan函数(计算不同出栈的总数)2.栈的基本操作1.顺序存储(1)顺序栈-定义:(2)顺序栈-栈空(3)顺序栈-入栈(4)顺序栈-出栈以及取值(5)共享栈2.链式存储(1)链栈-定义:(2)链栈-入栈(3)链栈-出栈(4)链栈-打印栈总代码如下:(可运行)1.栈的基础知识简介:栈是后进先出,
- 笔试数据结构选填题
参宿7
前端面试数据结构
目录卡特兰数Catalan:出栈序列/二叉树数树二叉树N0=1+N2哈夫曼树(最优二叉树)Huffman度m的哈夫曼树只有度为0和m的结点:Nm=(n-1)/(m-1)平衡二叉树AVLNh表示深度为h最少结点数,则N0=0,N1=1,N2=2,Nh=Nh-1+Nh-2+1最小生成树图最短路径模式匹配BF模式匹配:最坏T(n)=O(m*n),实际接近O(m+n)KMP模式匹配:O(m+n)完整见:前
- 【数据结构笔记】3.栈和队列
江城暮
数据结构
文章目录第3章栈和队列3.1栈3.1.1栈的基本概念1.栈的定义2.栈的基本操作3.1.2栈的顺序存储结构1.顺序栈的实现2.顺序栈的基本运算3.共享栈3.1.3栈的链式存储结构卡特兰(Catalan)数【注意】3.2队列3.2.1队列的基本概念1.队列的定义2.队列常见的基本操作3.2.2队列的顺序存储结构1.队列的顺序存储【注意】2.循环队列3.循环队列的操作3.2.3队列的链式存储结构1.队
- 5. 卡特兰数(Catalan)公式、证明、代码、典例.
Sherry_Yue
算法卡特兰数
1.定义卡特兰数(卡塔兰数),英文名Catalannumber,是组合数学中一个常出现在各种计数问题中出现的数列。其前几项为(从第零项开始):C0=1,C1=1,C2=2,C3=5,C4=14,C5=42,C6=132,C7=429,C8=1430,C9=4862,C10=16796,C11=58786,C12=208012,C13=742900,C14=2674440,C15=9694845,C
- 组合数学-Catalan数
StilllFantasy
从这节开始,我们遇到的组合数可能会比较大,大到longlong存不下,那怎么办?c++大数板子欢迎你...c++大数板子有好多版本,自己写的舒服直接保存下来备用即可,这里我不再提供,不过,这里我给大家准备了Java大数运算的简单代码,Java自带大数运算这个实属良心之举,可以关注我博客,传送门,只是简单介绍哦,深入探讨咨询度娘。开始正题,Catalan数是一组比较神奇的数字1,1,2,5,14,4
- Catalan数表达式完整推导
zorchp
Combinatorics
文章目录写在前面求解写在前面推导一下Catalan数的表示式,主要用到生成函数的方法,主要难点是幂级数的计算。求解Catalan数的递推关系满足:cn=∑j=0n−1cjcn−1−j,(n≥1,c0=c1=1)c_n=\sum_{j=0}^{n-1}c_{j}c_{n-1-j},\qquad(n\geq1,c_0=c_1=1)cn=j=0∑n−1cjcn−1−j,(n≥1,c0=c1=1)记C(x
- cs224n学习笔记3
TARO_ZERO
学习笔记nlp自然语言处理
依存分析两个句法分析工具:Context-freegrammars(CFGs)上下文无关文法Dependencystructure依存句法结构Dependencysyntax依存句法单词A修饰单词B,则称单词A是单词B的依赖,表示为BA解决句法歧义问题,可探究词汇或短语间的依存结构,关于嵌套规则有一定的约束条件,最终可能的结构的个数称为Catalan数Treebanks树库:人工标注的依存关系树依
- 普遍联系的数学模型
张信仿
恩格斯在《自然辩证法》上讲到:“辩证法是关于普遍联系的科学。”【1】其实,普遍联系是可以计算的,特别的是,计算可以发现普遍联系与Catalan数存在紧密的关系。还是让我们拿起笔来算一算吧。不过算之前,我们先来看一看数学上的关系。一元和二元关系是最基本的关系对于这个题目,教科书上是这样讲的。在我们所学的数学和集合论的教科书中,经常会讲到二元关系和多元关系。二元关系都是简单一致的。但对于多元关系,一般
- Python_3
日星月云
Pythonpython
Python_37-1又见A+B(2)(10分)7-2又见A+B(1)(10分)7-3输入输出练习(2)(10分)7-4Catalan数(10分)7-5字符梯形(10分)7-6删除列表中的重复值(5分)7-7sdut-最大公约数和最小公倍数(10分)7-8奇数的和(10分)7-9不按常理出牌的列表-实验4装番茄和啤酒的容器-《Python编程实验》(10分)7-10三天打渔、两天晒网-实验7简单的
- 312个免费高速HTTP代理IP(能隐藏自己真实IP地址)
yangshangchuan
高速免费superwordHTTP代理
124.88.67.20:843
190.36.223.93:8080
117.147.221.38:8123
122.228.92.103:3128
183.247.211.159:8123
124.88.67.35:81
112.18.51.167:8123
218.28.96.39:3128
49.94.160.198:3128
183.20
- pull解析和json编码
百合不是茶
androidpull解析json
n.json文件:
[{name:java,lan:c++,age:17},{name:android,lan:java,age:8}]
pull.xml文件
<?xml version="1.0" encoding="utf-8"?>
<stu>
<name>java
- [能源与矿产]石油与地球生态系统
comsci
能源
按照苏联的科学界的说法,石油并非是远古的生物残骸的演变产物,而是一种可以由某些特殊地质结构和物理条件生产出来的东西,也就是说,石油是可以自增长的....
那么我们做一个猜想: 石油好像是地球的体液,我们地球具有自动产生石油的某种机制,只要我们不过量开采石油,并保护好
- 类与对象浅谈
沐刃青蛟
java基础
类,字面理解,便是同一种事物的总称,比如人类,是对世界上所有人的一个总称。而对象,便是类的具体化,实例化,是一个具体事物,比如张飞这个人,就是人类的一个对象。但要注意的是:张飞这个人是对象,而不是张飞,张飞只是他这个人的名字,是他的属性而已。而一个类中包含了属性和方法这两兄弟,他们分别用来描述对象的行为和性质(感觉应该是
- 新站开始被收录后,我们应该做什么?
IT独行者
PHPseo
新站开始被收录后,我们应该做什么?
百度终于开始收录自己的网站了,作为站长,你是不是觉得那一刻很有成就感呢,同时,你是不是又很茫然,不知道下一步该做什么了?至少我当初就是这样,在这里和大家一份分享一下新站收录后,我们要做哪些工作。
至于如何让百度快速收录自己的网站,可以参考我之前的帖子《新站让百
- oracle 连接碰到的问题
文强chu
oracle
Unable to find a java Virtual Machine--安装64位版Oracle11gR2后无法启动SQLDeveloper的解决方案
作者:草根IT网 来源:未知 人气:813标签:
导读:安装64位版Oracle11gR2后发现启动SQLDeveloper时弹出配置java.exe的路径,找到Oracle自带java.exe后产生的路径“C:\app\用户名\prod
- Swing中按ctrl键同时移动鼠标拖动组件(类中多借口共享同一数据)
小桔子
java继承swing接口监听
都知道java中类只能单继承,但可以实现多个接口,但我发现实现多个接口之后,多个接口却不能共享同一个数据,应用开发中想实现:当用户按着ctrl键时,可以用鼠标点击拖动组件,比如说文本框。
编写一个监听实现KeyListener,NouseListener,MouseMotionListener三个接口,重写方法。定义一个全局变量boolea
- linux常用的命令
aichenglong
linux常用命令
1 startx切换到图形化界面
2 man命令:查看帮助信息
man 需要查看的命令,man命令提供了大量的帮助信息,一般可以分成4个部分
name:对命令的简单说明
synopsis:命令的使用格式说明
description:命令的详细说明信息
options:命令的各项说明
3 date:显示时间
语法:date [OPTION]... [+FORMAT]
- eclipse内存优化
AILIKES
javaeclipsejvmjdk
一 基本说明 在JVM中,总体上分2块内存区,默认空余堆内存小于 40%时,JVM就会增大堆直到-Xmx的最大限制;空余堆内存大于70%时,JVM会减少堆直到-Xms的最小限制。 1)堆内存(Heap memory):堆是运行时数据区域,所有类实例和数组的内存均从此处分配,是Java代码可及的内存,是留给开发人
- 关键字的使用探讨
百合不是茶
关键字
//关键字的使用探讨/*访问关键词private 只能在本类中访问public 只能在本工程中访问protected 只能在包中和子类中访问默认的 只能在包中访问*//*final 类 方法 变量 final 类 不能被继承 final 方法 不能被子类覆盖,但可以继承 final 变量 只能有一次赋值,赋值后不能改变 final 不能用来修饰构造方法*///this()
- JS中定义对象的几种方式
bijian1013
js
1. 基于已有对象扩充其对象和方法(只适合于临时的生成一个对象):
<html>
<head>
<title>基于已有对象扩充其对象和方法(只适合于临时的生成一个对象)</title>
</head>
<script>
var obj = new Object();
- 表驱动法实例
bijian1013
java表驱动法TDD
获得月的天数是典型的直接访问驱动表方式的实例,下面我们来展示一下:
MonthDaysTest.java
package com.study.test;
import org.junit.Assert;
import org.junit.Test;
import com.study.MonthDays;
public class MonthDaysTest {
@T
- LInux启停重启常用服务器的脚本
bit1129
linux
启动,停止和重启常用服务器的Bash脚本,对于每个服务器,需要根据实际的安装路径做相应的修改
#! /bin/bash
Servers=(Apache2, Nginx, Resin, Tomcat, Couchbase, SVN, ActiveMQ, Mongo);
Ops=(Start, Stop, Restart);
currentDir=$(pwd);
echo
- 【HBase六】REST操作HBase
bit1129
hbase
HBase提供了REST风格的服务方便查看HBase集群的信息,以及执行增删改查操作
1. 启动和停止HBase REST 服务 1.1 启动REST服务
前台启动(默认端口号8080)
[hadoop@hadoop bin]$ ./hbase rest start
后台启动
hbase-daemon.sh start rest
启动时指定
- 大话zabbix 3.0设计假设
ronin47
What’s new in Zabbix 2.0?
去年开始使用Zabbix的时候,是1.8.X的版本,今年Zabbix已经跨入了2.0的时代。看了2.0的release notes,和performance相关的有下面几个:
:: Performance improvements::Trigger related da
- http错误码大全
byalias
http协议javaweb
响应码由三位十进制数字组成,它们出现在由HTTP服务器发送的响应的第一行。
响应码分五种类型,由它们的第一位数字表示:
1)1xx:信息,请求收到,继续处理
2)2xx:成功,行为被成功地接受、理解和采纳
3)3xx:重定向,为了完成请求,必须进一步执行的动作
4)4xx:客户端错误,请求包含语法错误或者请求无法实现
5)5xx:服务器错误,服务器不能实现一种明显无效的请求
- J2EE设计模式-Intercepting Filter
bylijinnan
java设计模式数据结构
Intercepting Filter类似于职责链模式
有两种实现
其中一种是Filter之间没有联系,全部Filter都存放在FilterChain中,由FilterChain来有序或无序地把把所有Filter调用一遍。没有用到链表这种数据结构。示例如下:
package com.ljn.filter.custom;
import java.util.ArrayList;
- 修改jboss端口
chicony
jboss
修改jboss端口
%JBOSS_HOME%\server\{服务实例名}\conf\bindingservice.beans\META-INF\bindings-jboss-beans.xml
中找到
<!-- The ports-default bindings are obtained by taking the base bindin
- c++ 用类模版实现数组类
CrazyMizzz
C++
最近c++学到数组类,写了代码将他实现,基本具有vector类的功能
#include<iostream>
#include<string>
#include<cassert>
using namespace std;
template<class T>
class Array
{
public:
//构造函数
- hadoop dfs.datanode.du.reserved 预留空间配置方法
daizj
hadoop预留空间
对于datanode配置预留空间的方法 为:在hdfs-site.xml添加如下配置
<property>
<name>dfs.datanode.du.reserved</name>
<value>10737418240</value>
 
- mysql远程访问的设置
dcj3sjt126com
mysql防火墙
第一步: 激活网络设置 你需要编辑mysql配置文件my.cnf. 通常状况,my.cnf放置于在以下目录: /etc/mysql/my.cnf (Debian linux) /etc/my.cnf (Red Hat Linux/Fedora Linux) /var/db/mysql/my.cnf (FreeBSD) 然后用vi编辑my.cnf,修改内容从以下行: [mysqld] 你所需要: 1
- ios 使用特定的popToViewController返回到相应的Controller
dcj3sjt126com
controller
1、取navigationCtroller中的Controllers
NSArray * ctrlArray = self.navigationController.viewControllers;
2、取出后,执行,
[self.navigationController popToViewController:[ctrlArray objectAtIndex:0] animated:YES
- Linux正则表达式和通配符的区别
eksliang
正则表达式通配符和正则表达式的区别通配符
转载请出自出处:http://eksliang.iteye.com/blog/1976579
首先得明白二者是截然不同的
通配符只能用在shell命令中,用来处理字符串的的匹配。
判断一个命令是否为bash shell(linux 默认的shell)的内置命令
type -t commad
返回结果含义
file 表示为外部命令
alias 表示该
- Ubuntu Mysql Install and CONF
gengzg
Install
http://www.navicat.com.cn/download/navicat-for-mysql
Step1: 下载Navicat ,网址:http://www.navicat.com/en/download/download.html
Step2:进入下载目录,解压压缩包:tar -zxvf navicat11_mysql_en.tar.gz
- 批处理,删除文件bat
huqiji
windowsdos
@echo off
::演示:删除指定路径下指定天数之前(以文件名中包含的日期字符串为准)的文件。
::如果演示结果无误,把del前面的echo去掉,即可实现真正删除。
::本例假设文件名中包含的日期字符串(比如:bak-2009-12-25.log)
rem 指定待删除文件的存放路径
set SrcDir=C:/Test/BatHome
rem 指定天数
set DaysAgo=1
- 跨浏览器兼容的HTML5视频音频播放器
天梯梦
html5
HTML5的video和audio标签是用来在网页中加入视频和音频的标签,在支持html5的浏览器中不需要预先加载Adobe Flash浏览器插件就能轻松快速的播放视频和音频文件。而html5media.js可以在不支持html5的浏览器上使video和audio标签生效。 How to enable <video> and <audio> tags in
- Bundle自定义数据传递
hm4123660
androidSerializable自定义数据传递BundleParcelable
我们都知道Bundle可能过put****()方法添加各种基本类型的数据,Intent也可以通过putExtras(Bundle)将数据添加进去,然后通过startActivity()跳到下一下Activity的时候就把数据也传到下一个Activity了。如传递一个字符串到下一个Activity
把数据放到Intent
- C#:异步编程和线程的使用(.NET 4.5 )
powertoolsteam
.net线程C#异步编程
异步编程和线程处理是并发或并行编程非常重要的功能特征。为了实现异步编程,可使用线程也可以不用。将异步与线程同时讲,将有助于我们更好的理解它们的特征。
本文中涉及关键知识点
1. 异步编程
2. 线程的使用
3. 基于任务的异步模式
4. 并行编程
5. 总结
异步编程
什么是异步操作?异步操作是指某些操作能够独立运行,不依赖主流程或主其他处理流程。通常情况下,C#程序
- spark 查看 job history 日志
Stark_Summer
日志sparkhistoryjob
SPARK_HOME/conf 下:
spark-defaults.conf 增加如下内容
spark.eventLog.enabled true spark.eventLog.dir hdfs://master:8020/var/log/spark spark.eventLog.compress true
spark-env.sh 增加如下内容
export SP
- SSH框架搭建
wangxiukai2015eye
springHibernatestruts
MyEclipse搭建SSH框架 Struts Spring Hibernate
1、new一个web project。
2、右键项目,为项目添加Struts支持。
选择Struts2 Core Libraries -<MyEclipes-Library>
点击Finish。src目录下多了struts