codeforces 86 D. Powerful array
Let's sort the query intervals according to the following rule: first come the intervals with the left ends in Q_1, then the intervals with the left ends in Q_2, and so on. And if the left ends of the two queries belong to the same part, then the interval with the more left right end is assumed to be smaller.
In order to prove the stated asymptotic behavior we will follow the steps of the left and the right ends independently. We note that the left ends that belong to the same Q_i make <= n / p steps, and transition to Q_{i+1} costs no more than 2 * n / p steps. Therefore the left ends make <= n/p * n + 2*n steps (the second summand is O(n), and it's negligible).
The right ends in the common group move only to the right, and this proves <= n * p steps (during the whole process) estimate. We will estimate the transition to the next Q_i at no more than n steps, so overall we get < = 2 * n * p steps.
Thus, the total number of steps is no more than (n / p * n + 2 * n * p). Now we choose p = sqrt(n) which proves the statement.
#include <iostream> #include <cstdio> #include <cmath> #include <algorithm> #include <cstring> using namespace std; typedef long long LL; const int N=2e5+10,M=1e6+10; int a[N],cnt[M]; struct node{ int x,y,l,dex; }edge[N]; int cmp(node a,node b){ return a.l<b.l||(a.l==b.l&&a.y<b.y) ; } LL ans,res[N]; int L,R; void query(int x,int y,int dex){ if(dex){ for(int i=L;i<x;i++){ cnt[a[i]]--; ans=ans-((cnt[a[i]]<<1)+1)*a[i]; } for(int i=x;i<L;i++){ ans=ans+((cnt[a[i]]<<1)+1)*a[i]; cnt[a[i]]++; } for(int i=R+1;i<=y;i++){ ans=ans+((cnt[a[i]]<<1)+1)*a[i]; cnt[a[i]]++; } for(int i=y+1;i<=R;i++){ cnt[a[i]]--; ans=ans-((cnt[a[i]]<<1)+1)*a[i]; } } else { for(int i=x;i<=y;i++) { ans=ans+((cnt[a[i]]<<1)+1)*a[i]; cnt[a[i]]++; } } L=x; R=y; } int main() { //freopen("cin.txt","r",stdin); int n,t; while(cin>>n>>t){ int len=sqrt(1.0*n); memset(cnt,0,sizeof(cnt)); for(int i=1;i<=n;i++) scanf("%d",&a[i]); for(int i=0;i<t;i++){ scanf("%d%d",&edge[i].x,&edge[i].y); edge[i].dex=i; edge[i].l=(edge[i].x-1)/len; } sort(edge,edge+t,cmp); ans=0; for(int i=0;i<t;i++){ query(edge[i].x,edge[i].y,i); res[edge[i].dex]=ans; } for(int i=0;i<t;i++){ printf("%I64d\n",res[i]); } } return 0; }
这是那道和mobius相关的题:
#include <iostream> #include <cstdio> using namespace std; typedef long long LL; const int N=1e7+10; int mu[N],pri[N/10],cnt=0; bool vis[N]; LL sum[N]; void getmu(){ mu[1]=1; for(int i=2;i<N;i++){ if(!vis[i]){ mu[i]=-1; pri[cnt++]=i; } for(int j=0;j<cnt&&pri[j]*i<N;j++){ vis[i*pri[j]]=1; if(i%pri[j]==0){ mu[i*pri[j]]=0; break; } else mu[i*pri[j]]=-mu[i]; } } for(int i=1;i<N;i++){ if(mu[i]){ for(int j=0;i*pri[j]<N&&j<cnt;j++){ sum[i*pri[j]]+=mu[i]; } } } for(int i=1;i<N;i++){ sum[i]+=sum[i-1]*1LL; } } int main() { //freopen("cin.txt","r",stdin); int a,b,t; getmu(); cin>>t; while(t--){ scanf("%d%d",&a,&b); if(a>b){ a=a^b; b=a^b; a=a^b; } LL ans=0; for(int i=1;i<=a;i++){ //10/4=2; 10/2=5; int t1=a/i,t2=b/i; int next=min(a/t1,b/t2); ans=ans+1LL*t1*t2*(sum[next]-sum[i-1]); i=next; } printf("%lld\n",ans); } return 0; }