tensorflow学习笔记

学习路线:

训练阶段:数据打包-》网络构建、训练-》模型保存-》可视化查看

测试阶段:模型加载-》测试图片读取-》预测显示结果

常用函数学习使用


一、测试阶段

1、tensorflow打包数据

#coding=utf-8
#tensorflow高效数据读取训练
import tensorflow as tf
import cv2

#把train.txt文件格式,每一行:图片路径名   类别标签
#奖数据打包,转换成tfrecords格式,以便后续高效读取
def encode_to_tfrecords(lable_file,data_root,new_name='data.tfrecords',resize=None):
    writer=tf.python_io.TFRecordWriter(data_root+'/'+new_name)
    num_example=0
    with open(lable_file,'r') as f:
        for l in f.readlines():
            l=l.split()
            image=cv2.imread(data_root+"/"+l[0])
            if resize is not None:
                image=cv2.resize(image,resize)#为了
            height,width,nchannel=image.shape

            label=int(l[1])

            example=tf.train.Example(features=tf.train.Features(feature={
                'height':tf.train.Feature(int64_list=tf.train.Int64List(value=[height])),
                'width':tf.train.Feature(int64_list=tf.train.Int64List(value=[width])),
                'nchannel':tf.train.Feature(int64_list=tf.train.Int64List(value=[nchannel])),
                'image':tf.train.Feature(bytes_list=tf.train.BytesList(value=[image.tobytes()])),
                'label':tf.train.Feature(int64_list=tf.train.Int64List(value=[label]))
            }))
            serialized=example.SerializeToString()
            writer.write(serialized)
            num_example+=1
    print lable_file,"样本数据量:",num_example
    writer.close()
#读取tfrecords文件
def decode_from_tfrecords(filename,num_epoch=None):
    filename_queue=tf.train.string_input_producer([filename],num_epochs=num_epoch)#因为有的训练数据过于庞大,被分成了很多个文件,所以第一个参数就是文件列表名参数
    reader=tf.TFRecordReader()
    _,serialized=reader.read(filename_queue)
    example=tf.parse_single_example(serialized,features={
        'height':tf.FixedLenFeature([],tf.int64),
        'width':tf.FixedLenFeature([],tf.int64),
        'nchannel':tf.FixedLenFeature([],tf.int64),
        'image':tf.FixedLenFeature([],tf.string),
        'label':tf.FixedLenFeature([],tf.int64)
    })
    label=tf.cast(example['label'], tf.int32)
    image=tf.decode_raw(example['image'],tf.uint8)
    image=tf.reshape(image,tf.pack([
        tf.cast(example['height'], tf.int32),
        tf.cast(example['width'], tf.int32),
        tf.cast(example['nchannel'], tf.int32)]))
    #label=example['label']
    return image,label
#根据队列流数据格式,解压出一张图片后,输入一张图片,对其做预处理、及样本随机扩充
def get_batch(image, label, batch_size,crop_size):
        #数据扩充变换
    distorted_image = tf.random_crop(image, [crop_size, crop_size, 3])#随机裁剪
    distorted_image = tf.image.random_flip_up_down(distorted_image)#上下随机翻转
    #distorted_image = tf.image.random_brightness(distorted_image,max_delta=63)#亮度变化
    #distorted_image = tf.image.random_contrast(distorted_image,lower=0.2, upper=1.8)#对比度变化

    #生成batch
    #shuffle_batch的参数:capacity用于定义shuttle的范围,如果是对整个训练数据集,获取batch,那么capacity就应该够大
    #保证数据打的足够乱
    images, label_batch = tf.train.shuffle_batch([distorted_image, label],batch_size=batch_size,
                                                 num_threads=16,capacity=50000,min_after_dequeue=10000)
    #images, label_batch=tf.train.batch([distorted_image, label],batch_size=batch_size)



    # 调试显示
    #tf.image_summary('images', images)
    return images, tf.reshape(label_batch, [batch_size])
#这个是用于测试阶段,使用的get_batch函数
def get_test_batch(image, label, batch_size,crop_size):
        #数据扩充变换
    distorted_image=tf.image.central_crop(image,39./45.)
    distorted_image = tf.random_crop(distorted_image, [crop_size, crop_size, 3])#随机裁剪
    images, label_batch=tf.train.batch([distorted_image, label],batch_size=batch_size)
    return images, tf.reshape(label_batch, [batch_size])
#测试上面的压缩、解压代码
def test():
    encode_to_tfrecords("data/train.txt","data",(100,100))
    image,label=decode_from_tfrecords('data/data.tfrecords')
    batch_image,batch_label=get_batch(image,label,3)#batch 生成测试
    init=tf.initialize_all_variables()
    with tf.Session() as session:
        session.run(init)
        coord = tf.train.Coordinator()
        threads = tf.train.start_queue_runners(coord=coord)
        for l in range(100000):#每run一次,就会指向下一个样本,一直循环
            #image_np,label_np=session.run([image,label])#每调用run一次,那么
            '''cv2.imshow("temp",image_np)
            cv2.waitKey()'''
            #print label_np
            #print image_np.shape


            batch_image_np,batch_label_np=session.run([batch_image,batch_label])
            print batch_image_np.shape
            print batch_label_np.shape



        coord.request_stop()#queue需要关闭,否则报错
        coord.join(threads)
#test()

2、网络架构与训练

#coding=utf-8
import  tensorflow as tf
from  data_encoder_decoeder import  encode_to_tfrecords,decode_from_tfrecords,get_batch,get_test_batch
import  cv2
import  os
#根据队列流数据格式,解压出一张图片后,输入一张图片,对其做预处理、及样本随机扩充
class network(object):
    def __init__(self):
        with tf.variable_scope("weights"):
            self.weights={
                #39*39*3->36*36*20->18*18*20
                'conv1':tf.get_variable('conv1',[4,4,3,20],initializer=tf.contrib.layers.xavier_initializer_conv2d()),
                #18*18*20->16*16*40->8*8*40
                'conv2':tf.get_variable('conv2',[3,3,20,40],initializer=tf.contrib.layers.xavier_initializer_conv2d()),
                #8*8*40->6*6*60->3*3*60
                'conv3':tf.get_variable('conv3',[3,3,40,60],initializer=tf.contrib.layers.xavier_initializer_conv2d()),
                #3*3*60->120
                'fc1':tf.get_variable('fc1',[3*3*60,120],initializer=tf.contrib.layers.xavier_initializer()),
                #120->6
                'fc2':tf.get_variable('fc2',[120,6],initializer=tf.contrib.layers.xavier_initializer()),
                }
        with tf.variable_scope("biases"):
            self.biases={
                'conv1':tf.get_variable('conv1',[20,],initializer=tf.constant_initializer(value=0.0, dtype=tf.float32)),
                'conv2':tf.get_variable('conv2',[40,],initializer=tf.constant_initializer(value=0.0, dtype=tf.float32)),
                'conv3':tf.get_variable('conv3',[60,],initializer=tf.constant_initializer(value=0.0, dtype=tf.float32)),
                'fc1':tf.get_variable('fc1',[120,],initializer=tf.constant_initializer(value=0.0, dtype=tf.float32)),
                'fc2':tf.get_variable('fc2',[6,],initializer=tf.constant_initializer(value=0.0, dtype=tf.float32))

            }

    def inference(self,images):
        # 向量转为矩阵
        images = tf.reshape(images, shape=[-1, 39,39, 3])# [batch, in_height, in_width, in_channels]
        images=(tf.cast(images,tf.float32)/255.-0.5)*2#归一化处理



        #第一层
        conv1=tf.nn.bias_add(tf.nn.conv2d(images, self.weights['conv1'], strides=[1, 1, 1, 1], padding='VALID'),
                             self.biases['conv1'])

        relu1= tf.nn.relu(conv1)
        pool1=tf.nn.max_pool(relu1, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='VALID')


        #第二层
        conv2=tf.nn.bias_add(tf.nn.conv2d(pool1, self.weights['conv2'], strides=[1, 1, 1, 1], padding='VALID'),
                             self.biases['conv2'])
        relu2= tf.nn.relu(conv2)
        pool2=tf.nn.max_pool(relu2, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='VALID')


        # 第三层
        conv3=tf.nn.bias_add(tf.nn.conv2d(pool2, self.weights['conv3'], strides=[1, 1, 1, 1], padding='VALID'),
                             self.biases['conv3'])
        relu3= tf.nn.relu(conv3)
        pool3=tf.nn.max_pool(relu3, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='VALID')


        # 全连接层1,先把特征图转为向量
        flatten = tf.reshape(pool3, [-1, self.weights['fc1'].get_shape().as_list()[0]])

        drop1=tf.nn.dropout(flatten,0.5)
        fc1=tf.matmul(drop1, self.weights['fc1'])+self.biases['fc1']

        fc_relu1=tf.nn.relu(fc1)

        fc2=tf.matmul(fc_relu1, self.weights['fc2'])+self.biases['fc2']

        return  fc2
    def inference_test(self,images):
                # 向量转为矩阵
        images = tf.reshape(images, shape=[-1, 39,39, 3])# [batch, in_height, in_width, in_channels]
        images=(tf.cast(images,tf.float32)/255.-0.5)*2#归一化处理



        #第一层
        conv1=tf.nn.bias_add(tf.nn.conv2d(images, self.weights['conv1'], strides=[1, 1, 1, 1], padding='VALID'),
                             self.biases['conv1'])

        relu1= tf.nn.relu(conv1)
        pool1=tf.nn.max_pool(relu1, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='VALID')


        #第二层
        conv2=tf.nn.bias_add(tf.nn.conv2d(pool1, self.weights['conv2'], strides=[1, 1, 1, 1], padding='VALID'),
                             self.biases['conv2'])
        relu2= tf.nn.relu(conv2)
        pool2=tf.nn.max_pool(relu2, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='VALID')


        # 第三层
        conv3=tf.nn.bias_add(tf.nn.conv2d(pool2, self.weights['conv3'], strides=[1, 1, 1, 1], padding='VALID'),
                             self.biases['conv3'])
        relu3= tf.nn.relu(conv3)
        pool3=tf.nn.max_pool(relu3, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='VALID')


        # 全连接层1,先把特征图转为向量
        flatten = tf.reshape(pool3, [-1, self.weights['fc1'].get_shape().as_list()[0]])

        fc1=tf.matmul(flatten, self.weights['fc1'])+self.biases['fc1']
        fc_relu1=tf.nn.relu(fc1)

        fc2=tf.matmul(fc_relu1, self.weights['fc2'])+self.biases['fc2']

        return  fc2

    #计算softmax交叉熵损失函数
    def sorfmax_loss(self,predicts,labels):
        predicts=tf.nn.softmax(predicts)
        labels=tf.one_hot(labels,self.weights['fc2'].get_shape().as_list()[1])
        loss =-tf.reduce_mean(labels * tf.log(predicts))# tf.nn.softmax_cross_entropy_with_logits(predicts, labels)
        self.cost= loss
        return self.cost
    #梯度下降
    def optimer(self,loss,lr=0.001):
        train_optimizer = tf.train.GradientDescentOptimizer(lr).minimize(loss)

        return train_optimizer


def train():
    encode_to_tfrecords("data/train.txt","data",'train.tfrecords',(45,45))
    image,label=decode_from_tfrecords('data/train.tfrecords')
    batch_image,batch_label=get_batch(image,label,batch_size=50,crop_size=39)#batch 生成测试







   #网络链接,训练所用
    net=network()
    inf=net.inference(batch_image)
    loss=net.sorfmax_loss(inf,batch_label)
    opti=net.optimer(loss)


    #验证集所用
    encode_to_tfrecords("data/val.txt","data",'val.tfrecords',(45,45))
    test_image,test_label=decode_from_tfrecords('data/val.tfrecords',num_epoch=None)
    test_images,test_labels=get_test_batch(test_image,test_label,batch_size=120,crop_size=39)#batch 生成测试
    test_inf=net.inference_test(test_images)
    correct_prediction = tf.equal(tf.cast(tf.argmax(test_inf,1),tf.int32), test_labels)
    accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))





    init=tf.initialize_all_variables()
    with tf.Session() as session:
        session.run(init)
        coord = tf.train.Coordinator()
        threads = tf.train.start_queue_runners(coord=coord)
        max_iter=100000
        iter=0
        if os.path.exists(os.path.join("model",'model.ckpt')) is True:
            tf.train.Saver(max_to_keep=None).restore(session, os.path.join("model",'model.ckpt'))
        while iter<max_iter:
            loss_np,_,label_np,image_np,inf_np=session.run([loss,opti,batch_label,batch_image,inf])
            #print image_np.shape
            #cv2.imshow(str(label_np[0]),image_np[0])
            #print label_np[0]
            #cv2.waitKey()
            #print label_np
            if iter%50==0:
                print 'trainloss:',loss_np
            if iter%500==0:
                accuracy_np=session.run([accuracy])
                print '***************test accruacy:',accuracy_np,'*******************'
                tf.train.Saver(max_to_keep=None).save(session, os.path.join('model','model.ckpt'))
            iter+=1





        coord.request_stop()#queue需要关闭,否则报错
        coord.join(threads)

train()

3、可视化显示

(1)首先再源码中加入需要跟踪的变量:

tf.scalar_summary("cost_function", loss)#损失函数值
(2)然后定义执行操作:

merged_summary_op = tf.merge_all_summaries()
(3)再session中定义保存路径:
summary_writer = tf.train.SummaryWriter('log', session.graph)
(4)然后再session执行的时候,保存:
            summary_str,loss_np,_=session.run([merged_summary_op,loss,opti])
            summary_writer.add_summary(summary_str, iter)
(5)最后只要训练完毕后,直接再终端输入命令:
python /usr/local/lib/python2.7/dist-packages/tensorflow/tensorboard/tensorboard.py --logdir=log
然后打开浏览器网址:
http://0.0.0.0:6006

即可观训练曲线。

4、移植阶段

(1)一个算法经过实验阶段后,接着就要进入移植商用,因此接着需要采用tensorflow的c api函数,直接进行预测推理,首先我们先把tensorflow编译成链接库,然后编写cmake,调用tensorflow链接库:

bazel build -c opt //tensorflow:libtensorflow.so

bazel-bin/tensorflow目录下会生成libtensorflow.so文件


(2)调用api函数






import  tensorflow as tf
with tf.variable_scope('foo'):#在没有启用reuse的情况下,如果该变量还未被创建,那么就创建该变量,如果已经创建过了,那么就获取该共享变量
    v=tf.get_variable('v',[1])
with tf.variable_scope('foo',reuse=True):#如果启用了reuse,那么编译的时候,如果get_variable没有遇到一个已经创建的变量,是会出错的
    v1=tf.get_variable('v1',[1])






import  tensorflow.nn.rnn_cell

lstm = rnn_cell.BasicLSTMCell(lstm_size)#创建一个lstm cell单元类,隐藏层神经元个数为lstm_size

state = tf.zeros([batch_size, lstm.state_size])#一个序列隐藏层的状态值

loss = 0.0
for current_batch_of_words in words_in_dataset:
    output, state = lstm(current_batch_of_words, state)#返回值为隐藏层神经元的输出
    logits = tf.matmul(output, softmax_w) + softmax_b#matmul矩阵点乘
    probabilities = tf.nn.softmax(logits)#softmax输出
    loss += loss_function(probabilities, target_words)


1、one-hot函数:

#ont hot 可以把训练数据的标签,直接转换成one_hot向量,用于交叉熵损失函数
import tensorflow as tf
a=tf.convert_to_tensor([[1],[2],[4]])
b=tf.one_hot(a,5)

>>b的值为
[[[ 0.  1.  0.  0.  0.]]

 [[ 0.  0.  1.  0.  0.]]

 [[ 0.  0.  0.  0.  1.]]]

2、assign_sub

import tensorflow as tf

x = tf.Variable(10, name="x")
sub=x.assign_sub(3)#如果直接采用x.assign_sub,那么可以看到x的值也会发生变化
init_op=tf.initialize_all_variables()
with tf.Session() as sess:
    sess.run(init_op)
    print sub.eval()
    print x.eval()
可以看到输入sub=x=7

state_ops.assign_sub
采用state_ops的assign_sub也是同样sub=x=7

也就是说assign函数返回结果值的同时,变量本身的值也会被改变
3\变量查看

    #查看所有的变量
    for l in tf.all_variables():
        print l.name

4\slice函数:

import cv2
import  tensorflow as tf
#slice 函数可以用于切割子矩形图片,参数矩形框的rect,begin=(minx,miny),size=(width,height)
minx=20
miny=30
height=100
width=200

image=tf.placeholder(dtype=tf.uint8,shape=(386,386,3))
rect_image=tf.slice(image,(miny,minx,0),(height,width,-1))


cvimage=cv2.imread("1.jpg")
cv2.imshow("cv2",cvimage[miny:(miny+height),minx:(minx+width),:])


with tf.Session() as sess:
    tfimage=sess.run([rect_image],{image:cvimage})
    cv2.imshow('tf',tfimage[0])
cv2.waitKey()

5、正太分布:

tf.truncated_normal




你可能感兴趣的:(tensorflow学习笔记)